
GRAVITATIONAL POTENTIAL ENERGY

What is the work done by the force of gravity in moving an apple of mass, m_A , from a position r_0 (from the <u>center</u> of the earth) to a position r_1 (from the <u>center</u> of the earth)? (i.e., $W_{F_g} = ?$)

$$W_{F_g} = \int_{x=r_0}^{x=r_1} F(x) dx = \int_{r_0}^{r_1} -\frac{Gm_E m_A}{x^2} dx$$

$$= -Gm_E m_A \left(-\frac{1}{x} \right) \Big|_{r_0}^{r_1}$$

$$= Gm_E m_A \left[\frac{1}{r_0} - \frac{1}{r_0} \right]$$

Integral Calculus

THM/
$$\int x^{n} dx = \frac{x}{n+1} + C$$

 ex / $\int x^{5} dx = \underline{\hspace{1cm}} ?$
 ex / $\int_{x_{0}}^{0} -kx \, dx = -k \frac{x^{2}}{2} \Big|_{x_{0}}^{0} = \underline{\hspace{1cm}} ?$
 ex / $\int \frac{1}{x^{2}} dx = \underline{\hspace{1cm}} ?$

What is the work done by the force of gravity in moving the apple from r_0 to infinity(∞)?

$$W_{F_g} = Gm_E m_A \left[\frac{1}{\infty} - \frac{1}{r_0} \right] = -G \frac{m_E m_A}{r_0}$$

If $U_m = 0J$ then we are considering "deep space" or infinity to be our zero reference level or point, then

$$U_g = -G \frac{m_E m_A}{r}$$
 for our apple in the earth's \vec{g} - field.

Escape Velocity

How much speed (v₀) do we need to give our apple in order to just send it to deep space (∞) where $F_g \approx 0N$?

Let's use:
$$E_0 = E_f$$

$$\begin{bmatrix} \text{Here our starting} \\ \text{point is } \mathbf{r}_0 = R_E \\ R_E = 6.38 \times 10^6 m \end{bmatrix} \quad \mathbf{K}_0 + U_0 = K_f + U_f \quad \begin{bmatrix} \text{Here } \mathbf{K}_f = 0J \\ \text{since } \mathbf{v}_f = 0, \\ \text{and } \mathbf{U}_{\infty} = 0J \end{bmatrix}$$

$$\frac{1}{2} m_A v_0^2 + -G \frac{m_E m_A}{R_E} = 0 + 0$$

$$v_0 = v_{escape} = \sqrt{\frac{2Gm_E}{R_E}} \begin{bmatrix} \text{Where G} = 6.67 \times 10^{-11} \text{ and} \\ m_E = 5.98 \times 10^{24} kg. \end{bmatrix}$$

(continued from p.1)

If $c = 3.00 \times 10^8 \frac{m}{s}$ and we could crunch the earth into a small sphere, find the new earth radius which would turn the earth into a "black hole". Hypothetical earth radius = m?

Suppose we want to launch an apple satellite into orbit at a distance, $r_f = 12.8 \times 10^6 m$ from the center of the earth. What is the necessary orbital speed (v_f) ?

$$F_c = m_A a_c = m_A \frac{v^2}{r}$$

$$F_c = F_g = G \frac{m_E m_A}{r^2} = m_A \frac{v_f^2}{r}$$

$$\Rightarrow v_f = \underline{\qquad} m/s$$

Suppose the necessary orbital speed is $v_f = 6000 \frac{m}{s}$.

What takeoff speed, v_0 , is necessary to place the apple in orbit.

Here
$$r_0 = R_E = 6.38 \times 10^6 m$$
 and $r_f = 2R_E = 12.8 \times 10^6 m$.
Use $E_0 = E_E$

$$\frac{1}{2}m_{A}v_{o}^{2} + -G\frac{m_{E}m_{A}}{r_{0}} = \frac{1}{2}m_{A}v_{f}^{2} + -G\frac{m_{E}m_{A}}{r_{f}}$$

$$v_{0} = \underline{\qquad} m/s$$