AP CALCULUS BC – 2008 Form B (No Calculator) #4,5,6

4. A velocity-time graph! All right! Integral (displacement), Area (distance traveled),

    Derivative or slope (acceleration). Also we can use our 
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(2008) Let’s show the “zig-zags”.  X(0) = -2 and 
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 when x(3) = -10 (meters), then there is a positive displacement of +3 so that x(5) = -7 (meters), and finally a second negative displacement, 
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, so that x(6) = -9 (meters). 

    They ask for when (time) and where (position): 
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(b) Since the position function is continuous we can apply the Intermediate Value Theorem for each zig and zag (increasing/decreasing intervals): x(0) = -2 and x(3) = -10

so once where 0 < t < 3, x(5) = -7, so a 2nd time where 3 < t < 5, and since x(6) = -9, a 3rd time where 5 < t < 6. 
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© Since speed = |velocity|, we can graph the speed function as shown below.
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(d) Acceleration is the derivative (slope) of the velocity-time function. v(1) = v(4) = 0, 

hence slope is negative when 
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AP Calculus BC – 2008 Form B (No calculator)

5. (a) This is too easy? Since 
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 is always positive, we can get right to the 
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 number line.
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     (b) See 
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 number line above to show f is decreasing for x < 3. For concavity, we find 
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 using the product rule. 
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 The key here  is to 

factor out 
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 correctly.  Now for our 
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     (c) To find 
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, we integrate (recalling the ‘initial condition’ that f(1) = 7.



[image: image19.wmf](

)

'() =3?

x

fxdxxedx

-=

òò

 We’ll use integration by parts: I = 
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 so I = 
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          Plug in (1,7) and solve for the integration constant, C.  
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          Hence f(x) = 
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AP Calculus BC – 2008 Form B (No calculator)

6. (a)
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     (b) Euler’s method with 2 steps starting at t = 0 and ending with t = 1 (with f(0) = 8)


Step 1: 
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Step 2: 
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 Notice we use y = 7 for f(1/2)

      (c) 2nd Degree Taylor Polynomial about t = 0, 
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  hmm… tricky… I’d expect dy/dt to be in terms of ‘t’ not ‘y’!!!

           Well, for now, let’s find: 
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. We already have 
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           Related Rate problem? First, let’s rewrite dy/dt so we can take a 2nd derivative next.
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  Now plug in to find…
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Finally, we can plug in to get the Taylor expansion about t = 0.
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     (d) Range? y-values for 
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Since the slopes for f (starting with t = 0 and y = 8) are negative, f is decreasing.

          As y approaches 6, we obtain a slope of zero and hence no change in y.


Range:  
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Units? They didn’t give us any! So, we won’t give them any back!





Givens: 


     Initial position: x(0) = -2 (think meters)


     Initial velocity: v(0) = 0 (think m/s units)





The areas for each  + and  –  region are given as:  8 , 3, and 2. So the definite integrals are


-8 , +3, and –2 (meters of displacement). 








Since the slope of |v| is negative for 2 < t < 3,


speed is decreasing. 





We have a relative maximum when x = e, since the derivative changes signs from  + to –  there.





Since � EMBED Equation.DSMT4  ��� changes signs from – to +, we have a relative minimum when x = 3.





� EMBED Equation.DSMT4  ��� is positive (hence f is concave up) for x > 2.  


� EMBED Equation.DSMT4  ���
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