Calculus BC – Chapter 9 - Even Answers (F.T.D.W.)

Section 9.7
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  Taylor Series (a = 0)
y(0) = 0, y'(0) = 1, y''(0) = -1, y'''(0) = 2 
[image: image2.wmf]Þ
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. Now graph P3 – ln(1+x) to 'see' the error:
[-1,1], [-1,1] Yscl =1[image: image5.png]
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If you plan to use the 
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 button, 20 button pushes later, you'll find the x-steps a bit large? That causes the y-values to jump perhaps too much?  Now you still have to trace to the other side! Let's just add to 
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=

, y2 = .01 and y3 = -.01 (Well, we don't need y3 this time!)  to but an upper and lower bound on this error function. Then use 2nd 
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 and intersect:   [image: image10.png]Intersection
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 to get x = .485 (it says estimate, so i can round off, not 'up' but it's the same here!) and x = -.405 (again, rounding to 3 decimal places). So the difference or error function is less than .01 for |x| < .405 (approximately vs |x| < .404 to 'make sure'!)
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 Taylor Series (a = 0)
f(0) = ½ , f'(0) = - ¼ , f''(0) = ¼ , f'''(0) = -3/8 
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 P0 = ½ , P1 = ½ – ¼ x, 

P2 = 
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. Now graph y1 = P3 –
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(difference or error) and y2 = .01 and y3 = -.01 [image: image16.png]Intersection
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 and use 2nd 
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 to get x = -.678 and x = .820 (notice that with 3 curves, when prompted for the 2nd curve use the 'down arrow' to select y3 = -.01). Also, you might put a 'Guess' in just because it helps the program get your answer just a 'tad bit' faster! 
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Section 9.7 (continued)

6. 
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 Maclaurin Series (a = 
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Okay, I think I’m getting the hang of this. Now I’ll graph y1 = P3 – cos(x) and…

Did not like entering 
[image: image28.wmf]2
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 so many times! Hmm… then I got this incorrect graph! Did you?
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 There are 2 problems here…

(1)This is a Taylor Series expansion. I need a Maclaurin Series in terms of 
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 and  

(2) What’s going on to the right? Well, you could use Zoom Out but I don’t like how it changes my window size which I like at [-1, 1] and [-.1, .1]. Well let’s get to the issues!
(1) Do I have to now go back and INSert 
[image: image31.wmf](

)

4

x

p

-

 for x??? Here’s a neat trick… Recall graphing translations like f(x – 3) the shift to the right? Right! Let’s enter a new function, say y4 = y1(x -
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p

). Nice! Now y4 is a Maclaurin Series? Well, we don’t want to shift cos(x) so let’s DELete cos(x) from y1 and let y5 = y4 – cos(x) (or use y4 = y1(x -
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) – cos(x). 

Now to make sure you’ve highlighted y5 check out this screen shot!
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    Note the Taylor Series (y1).

(2) We need to shift our screen to the left 
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 EMBED Equation.DSMT4  [image: image36.wmf].7854

»

units… to see a possible intersection?

(Okay, if you used Zoom Out after all, you hit Zoom In you’ll get your original window back! But you’ll still want to play with your Ymin and Ymax…)

 Changed my X-window to [-.3, 2]. [image: image37.png]


 Used 2nd 
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 & Intersect 

x = .044779 and x = 1.5873 so to have an error less than .01, we need: .0448 < x < 1.587

*BTW – Have you ever had a the graphing calculator working on a graph that you decided was taking too long? To stop it, use 2nd 
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. 

Calculus BC – Chapter 9 - Even Answers (F.T.D.W.)
Section 9.7 (continued)

8. Taylor:  
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 P​0 = 2, P1 = 
[image: image43.wmf]1

4

2

x

+

, P2 = 
[image: image44.wmf]2

11

464

2

xx

+-

, 

P3 = 
[image: image45.wmf]23

111

464512

2

xxx

+-+

 and let y1 = P3 – 
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Hmm… what’s wrong now? I appear to get zip or zero for the graph? Zoom Out shows it’s just very ‘flat’ here but checking my WINDOW I see the intersection points are outside of my X-window of [-1,1]. So let me use [-3, 3] and [-.02, .02] to get a closer look?
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 Nice! Now using 2nd 
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 and Intersect we get:

x = -2.1184 and x = 2.6247 so |x| < 2.624 and we’re ‘in there’!!!

10. 
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  Taylor Series

By graphing as shown above we can find |P10 – ex/2| < .01 for |x| < 6.605

The error or remainder for n = 10 is given as: R10 = 
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 where c is between x and a = 0. Our problem is to find an upper bound on this term. Well, the 11th derivative of ex/2 at x = c is  
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R10 
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< .01  Solving for x yields a result of |x| < 5.1
*Now what’s this about an error bound (or size)? Well we can rewrite our function as in problems #2,4,6,8,10 as f(x) = Pn(x) + Rn(x). Of course if we new the Remaninder, we’d know the error exactly! Won’t happen! We’ll estimate the remainder or error on the ‘high side’ by considering the Maximum that 
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 can have for all t between x and a.

In the easiest cases, f and all it’s derivatives may be bounded by M, but what happens if the derivatives keep getting bigger as for y = sin(3x). Then the bound on |y| is 1 but the bound on |dy/dx| is 3 and gets bigger as … So estimating the error may not always be so easy! Our textbook would take this 2nd case into consideration by using an r = 3 in the following formula for a bound: 
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 where M is the maximum of y and r represents the increasing factor of the successive derivatives. Hence for y = sin(x), M=1 and r = 3. (For the easiest cases, r = 1) and M is the bound on y and all it’s derivatives…
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12. 
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 P10 = 
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R10 
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 < .01 
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 |x| < 1.003 insures an error less than .01 (See the note on #14 below on how to shortcut things when dealing with an alternating series.)

14. 
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 P10 = 
[image: image65.wmf](

)

(

)

22

4

21!

0

1

k

k

x

k

k

+

+

=

-

å


Graphing y1 = P​10
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 we’ll get |y1| < .01 when |x| < 2.942 

Using an upper bound on |R10|, we’ll find a smaller value or |x| < 2.929 

*As in #12 since the series is alternating, the size of the error is less than the next (or n+1) term, we can use |R10| < 
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 < .01 to obtain |x| < 2.929

16. sinh(x) = 
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 Notice when k is even the terms cancel and that leaves only the odd terms, so we have: 
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P10 =
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 and graphically, |P10 – sinh(x)| < .01 when |x| < 3.210

If we assume |x| < 3.5 to get a bound on |R10|, we have |R10| < 
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 and |x| < 2.496

18. Here use cos2x = ½ (1 + cos 2x) to get graphically |x| < 1.921 and note the alternating series allows us to study the 11th term after P10 to get |x| < 1.908
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22. (1 + x )k = 
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24. 
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28. See problem #24 where the error or remainder is 
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30. See problem #20 above where 
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 where c is between 0 and x or 0 < |c| < .01 

Now if c = -.01, the denominator is a little smaller than 1 and the fraction 1/(c+1)3/2 is a little bigger than 1 so multiply by 2 and say: 
[image: image94.wmf]2

3/2

1

2!

4(1)

x

c

+

 < 
[image: image95.wmf](

)

2

.01

1

2!2

×

 = 2.5 x 10-5
32. By the Alternating Series Theorem the |error| < |first omitted term| = 
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 .01, the last expression is greatest when h = .01, so substituting…

We get 
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 where j = k + 1, so this differs from the cos(x) series by 1.
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 Now group the like terms, multiplying to get: 1 + x + x2
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42. By the Alternating Series Theorem, 
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46. If 
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The last trick is to get (-sin(bx)+i cos(bx)) to equal 
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