Jessee’s Homework Solutions – Section 2.1 (p.116)
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/ Equation of the tangent line?  Use the Point-slope Form: 
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4. Find the derivative of 
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 which is:  
[image: image4.wmf]26

dy

dx

x

=-

, plug in x =3 to get mt = 0.

Hmm… This gets us a horizontal line. We must be at the vertex of the parabola?

So the equation of the tangent line is:  
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 or just 
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. So the vertex is on the x-axis. Let’s look back at the original y-equation in factored form… y = (x – 3)2 . Yup,

this is the basic parabola shifted 3 units to the right, right? 
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/ The directions to the next set of problems are not clear. (a) To find the slope of the tangent line, we’d like to have a specific point such as (3,0), but instead, we’re give the general point (x1, f(x1). So what do we plug in? Well, we plug in x = x1. It looks weird?

8.  
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 . Now plug in x = x1 to get:

(a) 
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 (which usually is a numerical value). This looks like the derivative function!

(b) This part of the problem is standard. Find where the curve “goes flat”. Find the derivative and set it equal to zero. 
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, hence the point 
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 is the vertex of our parabola.  

(c) See above for the graph.
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Straightforward problems. Use the Point-slope Form: 
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12. Find the tangent and normal lines to the curve: 
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 at the point (-5,3).

Notice the given function is a composite of a square root function and a linear function.
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 We get: 
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So our lines are: 
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.  See above for the graphs.

16. Here, take the original expression, 
[image: image23.wmf]8

y

x

=-

 and change move up the square root of x and change it into a “power expression” to get: 
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16. (continued) Now plug in the point (4,-4) or really just x = 4 to get:
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So our lines are: 
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The formulas are the formal definitions of a derivative (AP Calculus BC). We (in Calc AB) will just try to get good at finding the derivative. 

24. The derivative of cosine is negative sine. 
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28. 
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 See the graphs of secant and secant-squared above.
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 As above, don’t try to use yet a third definition (formula) for the derivative. Just go ahead and find the derivative…

32. f(x) = 10 is just the horizontal line, y = 10. The slope or derivative of that line is 0.
36. 
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 Finally, just find the derivative any way you can!

40. Here change the 1/x2 term to a power expression… namely, x-2, then…
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44. Again, don’t use the quotient rule, 
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, just move the denominator up…


[image: image40.wmf](

)

(

)

1

4

425

25

dd

dxdx

x

x

-

æö

=-

ç÷

-

èø

 = 
[image: image41.wmf](

)

2

2

8

4(25)2 or 

25

x

x

-

-

--×

-


48. I’m not sure finding a line perpendicular to one curve and parallel to a specific line is possible?! Well, here goes… First find the derivative to find the slope of the tangent line to the curve: 
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. We get: 
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. Now we also have to be parallel to the line, 2x + 18y – 9 = 0, which has a slope of -1/9. Setting the two slopes equal to each other, we get: 
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 iff 
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. So there are two points, (2,2) and (-2,-2), and two lines: 
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