BC Calculus – FDW 3rd Edition – Section 3.1 Even Answers
Quick Review 3.1 
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   8. 0   10. No, the limit does not exist (DNE) there.
Section 3.1
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. Hence, using point-slope form: 
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20. (a) 
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22. Graphs of f(x) and its derivative shown at the right. 
24. 
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26. (a) Graph is shown below.  (b) x = 0,1,4
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30. (a) See graph show at the right  (b) To estimate the 

 dy/dx (slope at a specific distance downstream), calculate 

 the slope over each interval and use the midpoint of the 

 x-interval for that specific distance. Ex/ Using the 2 points 

 shown at the right, 
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 Then once the table is finished (whew!) plot its graph.

 (c) (d) Units: feet change in elevation / miles downstream

 (e) The 2 points shown in the graph yield the ‘steepest’ slope.

 (f) The only trick to using the graph of (b) is that the y-prime (slope) values are negative. 

  The most negative y-prime or derivative value will be when the river is steepest. 
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  Use this piecewise derivative for points over than x = 1, but...
      It appears (if only we could plug in x =1 above) that the left- and right-hand derivatives are both ‘3’. However, the trick is that the two curves (pieces) are not connected! For 
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f(1) = 1, but for 
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 (ie, solid dot at (1,1) vs open dot at (1,3)). If one actually calculated the right-hand derivative at x = 1, it would not exist, but the simplest explanation is to note the ‘discontinuity’ at x =1, hence f(x) cannot be differentiable there.

34. Here we only need to check the right-hand derivative:  
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 hence f(x) does not have a right-hand derivative at x = 0. 

36. True    38. C     40. B    42.(a) 2x (b) 2 (c) 2 (d) 2 (e) Yes, the left- and right-hand derivatives are the same (f) 2 (g) DNE (h) DNE (right-hand derivative DNE)    44. -2
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