Chapter 2 (p.50) – Solutions 
                                    p.1
4. Think about the difference between these two equations: 
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In kinematics, we’ll use ‘x’ most often as a position coordinate and ‘d’ as distance.

There is a subtle difference in the meaning of the two t’s.  ???

The first equation gives the x-coordinate at an instant in time: x(2) = 4 m.

The second equation gives the distance traveled over an interval of  time (recall d = rt?). 
In Algebra 2, “What is the distance traveled over the first 2 seconds or for  0 < t < 2 sec?”
I like to use ‘t’ for an instant in time and ‘
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Oh yeah, the problem: (memorize the ‘box’) Average Velocity or 
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Now compare the following 2 questions…

(1) What is the average velocity over the first 2 seconds?  Answer: 20 m/s

(2) What is the instantaneous velocity at t = 2 seconds? 

(memorize the ‘box’)   Answer: 
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8. (a) 
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 so x(3) = 3(3)2 = 27 m.  (b) 
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Now what’s this about 
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? Well, it’s the average velocity over a time interval 
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It’s displacement or ‘change in position’ divided by change in time. So…

(c) 
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 and canceling the 
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(memorize the ‘box’)  
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     So as the change of time (off of the instant when t = 3 sec) gets smaller and smaller the average velocity gets closer and closer to 18 m/s. 

     Of course a student who has had calculus would just take the derivative of the original x-function (x = 3t2) to get the velocity function:  v(t) = 6t, so v(3) = 18 m/s .






Chapter 2 (p.50) – Solutions 
                                    p.2
9. Okay, what if you don’t have a position function (see above #8, where x = 3t2) to take a derivative? Well, look at the graph on p.50 and remember how slope equals ‘rise over run’? Since this is a position-time graph, 
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 (secant line? Geometry!)
Derivative of ‘x with respect to t’?  
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 (slope of the tangent line)
To answer velocity questions (average or instantaneous) on a x-t graph, think ‘slope’.

(a) 
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 (Note the decreasing x-t graph & the negative slope.)

(b) Here I used the 2 pts (3,2) and (2,6) to find: 
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 but it didn’t match the book’s answer of – 3.8 m/s. Hmm… well, if I look above the (2,6) point…
(c) Note the zero slope here, means zero velocity at t = 4 seconds. 
12. Average Acceleration 
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 (memorize the ‘box’)
What does the ‘
[image: image25.wmf]-

’ mean? The most common misunderstanding about negative acceleration is that students think this means ‘deceleration’ (ie, speed decreases). 

The ‘
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’ sign here means that the direction of the acceleration (think about the force direction that causes the acceleration) is to the left. What this means is that since velocity was positive in this problem, the acceleration-left (think force to the left) decreased not only the velocity but the speed. 

Suppose the velocity was already negative, say: 
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, in one second velocity would decrease by 4 m/s so 
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, but do you see what happens to speed? 
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, so speed has increased.


What causes this misunderstanding? Well, acceleration in physics has to do with velocity (not speed) and acceleration in English generally has to do with speed (not velocity). In this course ‘acceleration’ is the time-rate of change of velocity (not speed).

In English, ‘acceleration’ will generally mean speed increases and ‘deceleration’ will mean speed decreases.

13. ‘Speed ain’t Velocity’ – Let the ball’s initial velocity be v0 = 25 m/s and if it rebounds back to the left, then vf = -22 m/s. 
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Chapter 2 (p.50) – Solutions 
                                    p.3
14. (See p.51 for acceleration vs time graph) 
(a) For the first 10 seconds, the acceleration is constant (horizontal line) of 2 m/s2. 

Method 1 - We can use average acceleration: 
[image: image35.wmf]0

220

100

f

m

f

s

v

v

av

t

-

D

º==Þ=

D-

.

Method 2 - Use kinematics equation #2 for constant acceleration: 
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So our instantaneous velocity at t = 10 seconds would be: 
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Wait, they wanted speed​. Hmm… well, in this case, since v > 0, velocity equals speed.

Now we can’t use Method 2 for 0 < t < 20 sec because acceleration is not constant. 

Even Method 1 is tricky because we don’t know what the 
[image: image38.wmf]a

 or vf values are.

Let’s do this problem piece by piece. From above, we know v(10) = 20 m/s.

From 10 < t < 15 sec, a = 0 m/s2, so velocity remains constant at 20 m/s. 

From 15 < t < 20 sec, a = -3 m/s2, so velocity changes at a rate of -3 m/s per sec for 5 sec.

Use Method 2 for this time interval, letting vi = 20 m/s: vf = at + vi = -3(5) + 20 = 5 m/s.
Or Method 1 for this same 5-second time interval:  
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(b) From 0 < t < 10 sec, velocity increased from 0 m/s to 20 m/s at a constant rate.

Method A - We can use the Merton Rule (for constant a): 
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This is our average speed since we’re moving right with no zig-zagging. So d = rt applies.

d1 = 10(10) = 100 m. 

Method B - We could use kinematics equation #1: 
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and  let x0 = 0 or use 
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 as d1.

Method C - We could use kinematics equation #3: 
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and 
[image: image45.wmf]100

xm

D=

= d1. 
From 10 < t < 15 s. 

Method A - We can use the ‘old’ d = rt formula from Algebra 1 for constant speed.

So d2 = 20(5) = 100 m.

Method B – Using kinematics equation #1 with a = 0, requires we restart our stopwatch!
So 
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 which gives us a position of x = 200 m, but d2 is 100 m right? Right! 
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We could’ve/should’ve restarted our number line also! Let x0 = 0m, then xf = 100 m = d2.
From 15 < t < 20 s.

Method A - To use the ‘old’ d = rt, we need the Merton Rule and vi = 20 m/s & vf = 5 m/s. 

So r or
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. d3 = rt = (12.5)5 = 62.5 m.
Finally d1 + d2 + d3 = 262 m or 263 m (3 sig figs).
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15. (See graph on p.51)  
 (a) [image: image49.png]5 10 15 t(s)



  (b) 
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16. (See graph on p.51) For the x-t graph we’ll assume x0 = 0 m. We’ll also need to calculate where we are at: t = 3, 5, 7, and 9 seconds. 

From 0 < t < 3 sec, slope of v is a constant: a = 8/3 m/s2. (Hmm… pretty ugly!) 
Method A – The ‘old’ Merton Rule gives 
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Method B –  Kinematics equation #1 to get 
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From 3 < t < 5 sec, slope of v is zero: a = 0 m/s2. 

Method A – Velocity is a constant: v = 8 m/s. Use d = rt = 8(2) = 16 m. Now be careful here. We’ve just calculated distance traveled. 
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From 5 < t < 9 sec, slope of v is a constant: a = -16/4 = -4 m/s2. 

Method A – Merton Rule yields: 
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. Hmm… When velocity went from positive before 7 seconds to negative after 7 seconds, there was a ‘turnaround’. So average velocity does not equal average speed and we can’t use d = rt with a rate of 0 m/s.

We can figure out the displacement: 
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 x(9) = x(5) + 0 = 28m.
We should calculate x(7), the ‘turnaround’ point on the x-axis. 

From 5 < t < 7 sec, the Merton Rule gives us: 
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So x(7) = x(5) + 8 = 28 + 8 = 36m. 

Easier Way – Recall the integral (or algebraic area) of the velocity function = 
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From 0 < t < 3 sec, 
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From 3 < t < 5 sec, 
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From 5 < t < 7 sec, 
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From 7 < t < 9 sec, 
[image: image62.wmf](

)

11

22

288(9)(7)828

Abhxmxxm

-

=ÞD=-=-Þ=+=

V


vs Calculus (integration): 
[image: image63.wmf][
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Chapter 2 (p.50) – Solutions 
                                    p.5
16. (continued) For the x-t graph, we work ‘backwards’ (integrate) from the v(t) graph or function. From the v-t graph we can find (t,x) pts: (0,0), (3,12), (5,28), (7,36), (9,28).

From the v(t) function we can use our kinematics for constant acceleration since… 

From 0 < t < 3, constant acceleration: 
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From 3 < t < 5, acceleration: 
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From 5 < t < 9, constant acceleration: a = -4 m/s2 which means x(t) is a quadratic (parabola) 
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Calculus (integration) yields the same.
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Differentiation is easier. We don’t have to keep solving for the integration constant, C!
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17. (An easy one!)
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18. (Another easy one? No…  Be careful… Let’s find the turning point?)
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, set the derivative (velocity) equal to zero and solve for ‘t’.
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 (This could be useful!)

While we’re doing some work, we might as well find v(t) & a(t)…
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(a) average speed from 2 to 3 seconds ‘is safe’ because the turnaround occurs after 1/3 sec.


So, in this time interval, 
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 = distance traveled. x(3) – x(2) = 24 – 11 = 13m


Average speed = distance traveled / time = 13/1 = 13 m/s.

(b) 
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  (On our tests, expect negative velocities!)

(c) a(t) is constant, so a(2) = a(3) = 6 m/s2. (So easy, it’s tricky!)
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