I  Moment of Inertia  I                            p. 1
1. Point Mass  ( I = mr2 )
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From 'F = ma' we obtain: 
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Finally we have a relationship between torque and angular acceleration:
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 and if we call mr2, the 'moment of inertia, I' then we have our
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2. Lotsa point masses ( 
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)  That's a Greek sigma for 'S' (summation)!

3. Continuous Mass Distribution  ( 
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 ) Just think of the integral symbol as an elongated 'S' for summation!
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4. Hoop or Shell of mass, M, and radius, R ( I = MR2 )
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 = ?  Well, since all the little masses ( dm's ) are all at a distance of r = R, we can 'slide' out R2 as a constant to get: 
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      HOOP

  VS
                   SOLID CYLINDER  ( I = ½ MR2 )
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     End View

     Side View
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5. Solid Disk or Solid Cylinder of mass, M, and radius, R, (any length!) ( I = ½ MR2 )

The plan here is to sum a lot of hoops with radius, x. (See inside ring above.)


So… 
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 (where we will integrate from x = 0 to x = R)
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Finally we get:  
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I  Moment of Inertia  I                            p. 2
6. Rod of mass, M, and length, L ( ICM = 
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Here the plan is to integrate from x = 0 to x = L/2 (from the center out) and double our answer to get the I for the other half of the rod.
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I1/2 =
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Doubling and substituting for 'dm' we get:

2 I1/2 = I = 
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Finally, we get: 
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7. Parallel Axis Theorem – When rotating any mass about a line parallel to a line through its center of mass:  I = Icm + MD2  (where D is the distance between the two lines)
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    x = L
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c.m.


                               D = L/2 (distance from c.m.)             x = 0

8. Rod of mass, M, and length, L, rotated about a line at one of its ends (parallel lines...)

    (
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Method 1/  Using the Parallel Axis Theorem, I = 
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Method 2/ Integrating (we need the practice!) I =
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    This time we'll integrate from x = 0 to x = L (no doubling here!) 
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I  Moment of Inertia  I                            p. 3
[image: image113.wmf]dm

9. Hollow Cylinder, mass M and with an outer (R2) and an inner (R1) radius.


Same as the 'Solid Cylinder'.

 
Just integrate from x = R1 to x = R2 

 I = 
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  (This is just an exercise!)
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10. Rectangular Plate with dimensions 'a' and 'b' ,  I = 
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   Here, we'll consider long rods with length, L = b, and integrate from x = 0 to x = a/2

and then double our result to get the other half of the plank or plate!
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   For each 'dx' there will be a rod with area,
[image: image40.wmf]bdx

.
   Using #7 above, the parallel axis theorem:
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I = 2I1/2 = 
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I  Moment of Inertia  I                            p. 4
Time Out for Geometry! Area of a Frustum:  
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 (L is the slant height)
Step 1/ What's the lateral area of a cone?  
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     Proof: Cut along a slant height and unroll.
 




    Notice the sector of a circle with radius, 
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    When 
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 is measured in radians the arc length is: 
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    Using the figure above with s = 
[image: image61.wmf]2

r

p

= R
[image: image62.wmf]q

 =
[image: image63.wmf]l



 EMBED Equation.DSMT4  [image: image64.wmf]q
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Step 2/ What's the area of a frustum of a cone?   Area = 
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  (say R1 < R2)
     The area is simply the big cone area minus the little cone area.

     That formula is: Area = 
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  (Different?!)
     To show the two formulae are equal we'll use:

    (i) L = 
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      Now we'll start with the first area formula and substitute
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so our first formula becomes:  Area = 
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and that's our second area formula!  

I  Moment of Inertia  I                            p. 5

Now what was that frustum area all about? We'll actually use that 
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to calculate the moment of inertia of a frustum-like piece of a thin spherical shell. 

11. Thin Spherical Shell with mass, M, and radius, R  ( I = 
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Integrate from x = 0 to x = R and double our result. 
Also use:  x2 + y2 = R2 
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Obtain slant height 'ds' with the Pythagorean Thm.
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 where 'r' is replaced by 'y', giving us: 
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 EMBED Equation.DSMT4  [image: image89.wmf](
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12. Solid Sphere with mass, M, and radius, R (
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  At least the hard work has all been done above! Now we'll sum up (integrate) a lot of thin spherical shells from x = 0 to x = R . (Note: We don't have to double our result this time.)
  
[image: image93.wmf](

)

222

22

33

I #10 (IMR) and since 4...

dIdmxdmdVxdx

rrp

==×===

òò


   I 
[image: image94.wmf](

)

3

4

3

224

8

2

33

0

4

R

M

R

x

xxdxxdx

p

p

rp

=

==×

òò


   I 
[image: image95.wmf](

)

5

33

5

2

222

55

0

0 IMR

5

R

MMR

RR

x

==-==

 
That's All Folks!     

HOOP


I = MR2
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