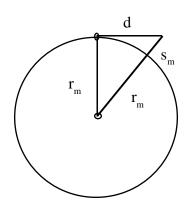
The Apple and the Moon

Worksheet on that 1/20 of an inch!



$$r_m^2 + d^2 = (r_m + s_m)^2 = r_m^2 + 2r_m s_m + s_m^2 \approx r_m^2 + 2r_m s_m \text{ (why?)}$$

hence
$$d^2 \approx 2r_m s_m$$
 and $s_m = \frac{d^2}{2r_m} =$ ____inches

where s_m is the distance the moon falls back toward the earth in 1 sec.

Below we calculate d and r_m.

The Law of Inertia predicts a straight line path for the moon.

We can calculate the speed of the moon using "distance equals rate times time".

moon speed =
$$\frac{2\pi r_m}{1 \text{month}} = \frac{2\pi r_m}{27.32 \text{days}} = \underline{\qquad} \text{in/sec}$$

where r_m stands for the earth - moon distance of $3.84 \times 10^8 m = 239,000 \text{ mi} = ____ inches.$

Using d = rt for one second we expect the moon to travel a distance of $d = ()(1) = \underline{)}$ inches.

Now, how does Newton's Universal Law of Gravitation predict how far the moon will fall back toward the earth in one second? (ie, what value did Newton's theory obtain for s_m ?

Newton's law allows us to calculate the acceleration of an apple toward the earth using:

$$G = 6.67 \times 10^{-11}$$
 and $m_e = 5.98 \times 10^{24}$ kg and $r_e = 6.38 \times 10^6$ m

$$m_a a_a = G \frac{m_a m_e}{r_e^2} \Rightarrow a_a = 9.80 \frac{m}{s^2} \approx 32 \frac{ft}{s^2}$$

Similarly we obtain:

$$m_m a_m = G \frac{m_m m_e}{r_m^2} \Rightarrow a_m = G \frac{m_e}{r_m^2}$$

We can now calculate the acceleration of the moon, a_m , without G or m_e .

All we need is $r_e \approx 4000$ mi and $r_m \approx 240,000$ mi (actually 3970mi and 239,000mi).

$$\frac{a_m}{a_a} = \frac{a_m}{32 \frac{ft}{s^2}} = \frac{G \frac{m_e}{r_m^2}}{G \frac{m_e}{r^2}} = \left(\frac{r_e^2}{r_m^2}\right) = \left(\frac{1}{60}\right)^2 \Rightarrow a_m = \frac{1}{3600} 32 \frac{ft}{s^2} = \frac{in}{s^2}$$

Now we can use: $s_m = \frac{1}{2}at^2$ with t = 1 sec. to find $s_m = \underline{\hspace{1cm}}$ in.

What is the percent error between the two s_m 's?