Max/Min Problems - Section 8.3 (p.372)
5. Box with no lid. Height ‘y’ and square base with side ‘x’. Surface area of 120 cm2. 

    We want to find a maximum volume with 
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 , however we need Volume in terms of  single variable, say x. Now 
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Now substitute for y in the volume formula to get:
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 We’re still not quite ready to take the derivative! We don’t want to use the product rule ( d(uv) = u dv + v du ) , so distribute the ‘x’ to get:
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. Now we can finally to the max/min problem! Set dV/dx equal to zero… 
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. Solving for the critical x-values, we get: 
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Now we use or 1st Derivative (number line) test… noting that x > 0.
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  decr        inc      decr        For x > 0, we have an absolute max volume when x =
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         and this gives us a y = 
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7. V = 5xz = 72 ft3  vs C = 10(5x) + 5(10 + 2x )z  

Now z = 
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Check the number line! Minimum cost, C… you plug it in!

9. Graph y = ex and let ‘s’ stand for distance. S = 
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 replacing the y with?

S = 
[image: image17.wmf](

)

2

2

x

xe

+

 =
[image: image18.wmf]22

x

xe

+

which gives 
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Graph the derivative of S and use 2nd CALC to find the ‘zero’. x = - .426 and y = .653 

13. Let x = radius or width and let y = altitude or height. P = 2x + 2y = 1200 mm.

To find maximize volume let 
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 =  ?  Solve for y first! y = 600 – x , so…
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. Now 
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So x = 0, 400 mm  and checking the number line… 

15. A = 
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 and use V = 
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 = 444 cm3 . Solve this for h. 
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 and then 
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. Number line says we have a minimum area there!

*Here’s a common error when getting r! 
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**The calculator works left to right with 
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17. A = 
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 and use 
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 now solve for h, etc…

etc! (see problem #15)

*There’s a little trick here too when changing from cm2 to m2, we have to realize 

that 1 square meter is a 100cm 
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 100cm square and hence 104 cm2 = 1 m2.
19. A = 2xy and y = cos(x) give us: 
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 and graph dA/dx to get our 

1st derivative number line, etc! (see problem #9) 

*You really don’t have to hit 
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 to graph dA/dx.

**You could do the product rule and enter y2 as dA/dx directly. Then graph this…

***Make sure you’re in Radian Mode and use Xmin = 0 and Xmax = 
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23. (a) A = 2xy  and  y = 9 – x2 and substitute into the area formula. 
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. Check the number line! We get a max!

(b) P = 4x + 2y = 
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Number line says a max!

(c) No, since the x-values are different.

25. 
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 but this time solve for x2 = 100 – y2 (nice!)
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Number line says ‘maximum volume’.
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