Limit Theory (page 5)

Lemma 5.1/ 
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Proof/ We want 
[image: image2.wmf]1111()

 and notice 

()()()

Mgx

gxMgxMMgx

e

-

-<-=


Now for 
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 (We want to get a bound on this expression, the denominator. We’re not worried about the numerator since we can make it as small as we need.) 
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, we have
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Now
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. (This can be done, since g(x) may be zero for an infinite number of x’s, but in some deleted-neighborhood about ‘a’, no g(x) can equal zero unless (1) lim g(x) = 0, but it’s not or (2) lim g(x) DNE, but it does.)

Now 
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 Finally we put everything together…
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Def/ f(x) is bounded on an interval, I, iff 
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Lemma 5.2 (Preservation of Approach to Zero)


If (1) f(x) is bounded in a deleted-neighborhood of ‘a’ and (2) lim g(x) = 0,


then lim f(x)g(x) = 0.

Proof/ (1) 
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(2) 
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then 
[image: image14.wmf]()()lim()()0.  QED.

fxgxcfxgx

c

e

e

<×=Þ=


Thm 5/ If lim f(x) = L and lim g(x) = M, 
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“Limit of a Quotient”

Proof/ By Lemma 5.1, lim 1/g(x) = 1/M and By Thm 4, 
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Limit Theory (page 6)

Continuity Theorems

Thm 1*/ If f and g are continuous at x = a, then f+g is continuous at x = a.

Proof/ lim f(x) = f(a) and lim g(x) = g(a), then lim(f(x)+g(x)) = f(a) + g(a). QED.

Thm 2*/ If f(x) = c (constant function), then f is continuous 
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Proof/ lim f(x) = c, hence limit exists and is equal to the function value (same for all x).

Thm 3*/ If f is continuous at x = a, then 
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Proof/ lim f(x) = f(a) and Limit Thm 3 says 
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Thm 4*/ If f and g are continuous at x=a, then fg (the product function) is continuous at x=a.

Thm 5*/ If f and g are cont… etc

Back to Limit Theory…

Lemma 6.1/ 
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Proof/ For any 
[image: image22.wmf]0,we need to find a 0()

xafxa

e

edde

>'<-<Þ-<

 but f(x) = x…

So we can just let 
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 and we’ve got lim x = a = f(a).  QED.

Lemma 6.2/ lim xn = an  For any positive n.

Proof/ By induction on n.

 (i) Show true for n=1. lim x1 = a1 true by Lemma 6.1

(ii) Assume true for n=k, ie, lim xk = ak (and try to show true for n=k+1, ie lim xk+1 = ak+1)


lim xk+1 = lim xkx = aka = ak+1 (using Thm 4 (Limit of a Product) and Lemma 6.1)


hence true for n=k+1

(i) and (ii) imply by the Math Induction Principle that the original statement is true for all the counting or natural numbers (1,2,3,…).

Thm 6/ If Pn(x) is an nth degree polynomial, 
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, then lim Pn(x) = Pn(a). 

‘Continuity of polynomial functions’

Proof/ For n=0, P(x) = c (constant or zero polynomial) and lim P(x) = c = P(c) (See Thm 2).

  (i) For n=1, P(x) = mx + b (linear function). lim (mx+b) = ma+b = P(a), cont. by Lemma 6.1

 (ii) Assume true for n = k+1, ie, lim Pk(x) = Pk(a) (continuity for all kth degree polynomials)

      Consider Pk+1 = d0xk+1 + d1xk + … + dkx + dk+1 but Lemma 6.2 says lim doxk+1=d0ak+1
      and lim(d1xk + … + dkx + dk+1)=d1ak +… + dka + dk+1 by the induction hypothesis for n=k.

      So lim Pk+1= d0ak+1 + (d1ak +… + dka + dk+1) = Pk+1(a), hence continuity here also.

(i) and (ii) imply by the Math Induction Principle that P(x) is continuous for all n = 1,2,3,…

Thm 7/ Say r(x) = N(x)/D(x), then lim r(x) = N(a)/D(a)  where N(x) and D(x) are polynomial functions with D(a)
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‘Continuity of Rational Functions’

Proof/ See Thm 6 and Thm 5

Limit Theory (page 7)
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then 
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Proof/ 
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. And since we have 
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we also have: 
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Notice g(x) is squeezed between 
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. QED

Thm 9/ 
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‘Limit of a composite function’

Note: f(x) need not be continuous at x=a. f(a) need not exist, or if it does, it need not equal L.

Proof/ Since g is continuous at L and using the letter ‘y’ for its domain element 
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Since limit of f(x) is L, as ‘x’ approaches ‘a’ and letting y = f(x),

for any 
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Hence we have 
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. In other words, we use a delta-neighborhood about 

x = a which lands f(x) in a different delta-neighborhood about y = L which is small 

enough to guarantee that g(y) = g(f(x)) is in the required epsilon-neighborhood of g(L).

We have 
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(Very nice, but notice this doesn’t guarantee continuity for g(f(x)) at x=a, since f(a) needn’t be defined or equal to L. The next theorem or corollary gives us an additional condition sufficient to give us continuity of the composite function at x=a.)

Corollary 9.1/ 
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‘Continuity of a composite function’ (
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Proof/ 
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Notice that 
[image: image46.wmf]lim

xa

®

 f(x) = L and 
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 g(y) = M does not imply that 
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ex/ 
[image: image49.wmf](

)

2

2

xy2

4sin

If (), then lim()2.If ()25, then lim()9.

2

y

y

xx

fxfxgyygy

x

-

-

®¥®

+

===+=
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an undefined g(f(x)) for some x, as x approaches infinity. 

Therefore, 
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Continuity of g(y) at y=L removes the problem of g(y) not being defined for such x’s. 
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