Proving the SLIDE THEOREM

Prove one can ‘slide’ a constant factor ‘out’ when dealing with a limit.
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Prove: 
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‘Scratch work’


let’s see… we want to have 
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>0, say… 
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okay, this should work…

Proof:
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Now for each 
[image: image10.wmf]0  that same 0  0()* 

xafxL

c

e

edde

>$>'<-<Þ-<=


Now multiply both sides of the last inequality by the absolute value of ‘c’ to get:
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 which says 
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  QED

Corollary: 
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(The derivative of a constant times f(x) equals the constant times the derivative of f(x).)

Proof:
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hence  
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