                        VOLUMES with Different Cross-sections                   p.2
Ex 2/ Triangular Cross-sections 
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 to the y-axis. The height of each triangle will vary with the distance from the x-axis given by the formula:  y = 
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y

.
Base region in the xy-plane inside the circle: x2 + y2 = 16
(Drawing suggestion: “Tilt the xy-plane down a bit!”)
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     dy                               (x,y)





                                         		





We’ll take ‘horizontal strips’ � EMBED Equation.DSMT4  ��� to the y-axis and integrate from y = -4 to y = 4 or…


How about integrating from y = 0 to y = 4 and just doubling our result? If we stay in the 1st quadrant, we can just use: h = 3y for the height of our triangles! Okay, we will!





Using the formula for the volume of a prism (and cylinder), V = BH, we obtain:


 (Use the area of a triangle as: � EMBED Equation.DSMT4  ��� and h = 3y – Note the ‘big’ H = thickness, dy) 


� EMBED Equation.DSMT4  ���


Hence V = � EMBED Equation.DSMT4  ��� (Note the ‘times 2’ since we’re going from y = 0)





Now with u = 16 – y2, we have du = -2y dy, so slide the ‘2’ back in and get a ‘-‘ in too.


V = � EMBED Equation.DSMT4  ��� = � EMBED Equation.DSMT4  ���


    � EMBED Equation.DSMT4  ���
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