Series Convergence – 1.0 – Solutions



p.1
1. 
[image: image1.wmf]1

1

1

n

n

¥

=

+

å



[image: image2.wmf]1

1

1

1

limlim10

n

n

n

n

n

®¥

+

+

==¹

. Hence by the Limit Comparison Test, 

since 
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 is a divergent p-series, both series diverge.
*Note – To use the comparison test with the divergent p-series, 
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, we would need to 

show 
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 which isn’t true! If we just had a ‘minus one’ down below, we’d be ok!
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Ratio Test - 
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*Actually, anytime the Ratio Test works, the n-th Root Test will also 

work (if with more difficulty). We can try to show convergence, recalling the important limit result to be used so often with the n-th Root Test, 
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. Now consider the limit of the nth root of the general term. 
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, the denominator is 2 (nice!) but the numerator has the annoying ‘1’ added to 
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. Hmm… I could do a Limit Comparison Test (trick) with 
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 (i) by showing this series converges by the n-th root test, since: 
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, and  (ii) by the LCT, 
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3. 
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  is a convergent p-series, 

we have convergence by the Comparison Test (just to practice using it! LCT is easier!)
*Did you recognize the partial fraction decomposition problem? We could have used the Integral Test, by writing: 
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 and then, letting k = -3 to get 
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[image: image20.wmf]1

2

A

=

, so integrating 
[image: image21.wmf]11

13

AB

kk

¥¥

+

++

òò

 we get natural logs: 
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    Ratio Test - 
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*The Comparison Test for convergence works nicely here since 
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is a convergent geometric series |r| < 1 and 
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 C also.
5. 
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   Integral Test - 
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*Once again the Limit Comparison Test is easiest. I ‘see’ this series as just another convergent p-series, 
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, with p > 1. So let’s compare! 
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6. 
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  Limit Comparison Test with convergent p-series, 
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7. 
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  Alternating Series Test (?) – All we need to show here is that the absolute value of the general term goes to zero. Wait! It doesn’t! Notice the 
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 hence the serried diverges. Let’s call this theorem the Limit of the General Term Test (I just made that name up but it sounds okay?)
8. 
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 Now this one uses the Alternating Series Test (or theorem). We need not consider the (-1)n-1 but rather note that the degree of the following numerator is less than the degree of the denominator (recall rational function asymptote, y = 0?) so that: 
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. So if the absolute value of the general term goes to zero (in an alternating series), the alternating series converges!
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 When you see factorials, try the Ratio Test. 
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 EMBED Equation.DSMT4  [image: image45.wmf](

)

1

1

limlim11

n

n

n

nn

n

eD

n

®¥®¥

+

æö

==+=>Þ

ç÷

èø

.

*Now someone has proven that the n-th Root Test works when the Ratio Test works and also that the n-th Root Test is more ‘powerful’ because it can work when the Ratio Test doesn’t… but unless I figure out how to work with 
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10. 
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  Again when you see the factorials, think Ratio Test! 
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*So when do we use the n-th Root Test???
We can use it when we see a nn or 2n, but then a ratio test works too…
When we have a function to the nth power that gives the ratio test trouble… as in…

Ex/ 
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  Here the ratio test is a mess. You try to use L’Hopital’s Rule, etc… no go!

Consider the n-th root of the general term… 
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 Easy!

BTW: Some important limits to use for series convergence tests:

1) 
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“Well, 
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.” What’s wrong with that argument? Recall that when we used notation to indicate some advanced limit and L’Hopital’s Rule problems, we often wrote: 
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 (also in other studies: 
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