Infinite Series – Fill-in Test                                     p.1
1. The _______________, 
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, converges for 
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What is the sum of such a series? _________

2. A geometric series is an example of a p____ series. 
The sum of the infinite series: 
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 is ______ provided x is in what is called the “interval of convergence”.
3. In #2, the interval of convergence for that power series is _________ , where the   

    
interval of convergence is the set of all x values for which the series converges. 

4. A power series can be thought of as a polynomial of infinite degree. A power series is an “expansion about the origin (x = 0) when it takes the form of: 
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A power series is said to be an “expansion about the point x = a, when it can be  

expressed (in summation notation) as: ________.
5. We need to memorize certain power series expansions for common functions.


So we can write 
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 (first four nonzero terms)




  or 
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  (in summation notation)


Similarly, for 
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, write the first four nonzero terms (a) 
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and (b) using summation notation express 
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What we are saying is that each infinite series converges, for a given x-value) to the  function value for y = sin(x) or for y = ex.

6. Assuming that y = f(x) = cos(x) has a power series expansion about the origin, 

find the first four nonzero terms of (a) y = cos(x) 
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and also give a correct summation notation form for (b) cos(x) 
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Power series expansions, 
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, about the origin are called ​​​​​​​​​​___________ series.
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7. Power series expansions about a point 
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 are called ​​​​​​​​​​​​​​____________ series.


Find the Taylor Series for y = 1/x about the point x = 2 (ie, 
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(a) Indicate the first 4 nonzero terms:  

_______________________________________

(b)  Express using summation notation:  
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(c) Show your work below as to how the coefficients of the first 4 terms are obtained.

8. Under proper conditions, many convenient operations are available for convergent series. For example, since 
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(a) by substitution we can find the Maclaurin Series for 
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Since 
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we have 
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 (1st four terms)


(b) by integrating term by term, the 
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 series above, we can obtain the 

power series for 
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Here also practice expressing this series in summation notation: __________

9. Other operations such as addition and multiplication by a constant are also available.

    If 
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, find the Maclaurin Series for this (hyperbolic cosine) function.

    Here list the 1st four nonzero terms and indicate the general term.
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10. Give the most common counterexample to the statement that “If 
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 converges.”  (Hint: It’s called the harmonic series) ________________ 

11. Is the converse of the above statement true? _____

12. Use the Ratio Test to determine if the following series converges:  
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13. Use the Integral Test to determine if the following series converges: 
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14. Use the Limit Comparison Test to determine if the following series converges: 
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15. Why can’t we use the Comparison Test of the above series with the divergent 
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16. A corollary to the Integral Test concerns series of the form: 
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 , called __________. These series converge iff p is _________.

17. Use the Alternating Series Theorem to determine the convergence or divergence for:
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 (Start off by showing that 
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 is decreasing by using its 1st derivative.)

18. Find the interval of convergence for the Maclaurin Series: 
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. (Hints: Use the Ratio Test and be sure to test the endpoints.)
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