CONSTANT ANGULAR ACCELERATION - Q1.0

- 1. A turntable starts from rest. After 3.2 sec of constant angular acceleration, $\omega_f = 5 Rad_s$. Find α .
- 2. The angular velocity of a spinning object varies as: ω = 4t + 3, where ω is in Rads.
 (a) Find the initial angular velocity. (b) What is the angular acceleration?
 (c) Find ω at t = 2 sec.
- 3. The angular position of a ray on a rotating turntable is given by:

 $\theta = 6t^2 + 7t + 1$ (θ is in radians)

- (a) Find the initial angular position of the ray. (b) What is the angular acceleration? (c) $\omega_0 = ?$
- 4. A turntable is spinning with an angular velocity of 40 Rad_8 and then slows to a stop with a constant angular deceleration of 5.2 Rad_{82} , find (a) the angular displacement and (b) the number of revolutions made as the turntable comes to rest.
- 5. State the Merton Rule for average angular velocity and indicate one condition under which it is true.
- 6. If $\omega_0 = 9 \text{ Rad}_8$ and angular acceleration is 4.3 Rad_{s2} , then find ω_f after 2.7 sec.

7. If
$$\omega_0 = 2 \frac{Rad}{s}$$
 and angular acceleration is $-1.5 \frac{Rad}{s^2}$, then find ω_f when $\Delta \theta = -4 \frac{Rad}{s}$.

- 8. The angular position (in Radians) of a ray on a turntable is given by: $\theta = t^2 - 4t + 3$ for $t \ge 0$ sec.
 - (a) What is θ_0 ? What quadrant (I, II, III or IV) is the ray initially in?
 - (b) What is ω_0 ? Is the ray initially rotating clockwise(cw) or counterclockwise(ccw)?
 - (c) What is α ? Is the direction of angular acceleration clockwise(cw) or counterclockwise(ccw)?
 - (d) Write the ω or angular velocity as a function of time.
 - (e) Is $|\omega|$ or the angular speed of the ray going to initially increase or decrease?
 - (f) When is ray going to stop and change directions?
 - (g) Where is the ray when it changes its direction?
 - (h) What is the angular displacement, $\Delta \theta$, after the first three seconds?
 - (i) What is the angular distance traveled after the first three seconds?