A vector is a 1, 2, or 3-dimensional concept with a magnitude and a direction.

ex / Velocity is a vector concept.

In one dimension, we often picture motion along the mathematical x-axis.

<u>we write:</u>	<u>magnitude</u>	<u>direction</u>
$5 \mathrm{m/s}$	5 m/s	positive-x
-5 m/s	5 m/s	negative-x

In two dimensions, vectors can be written in many different ways.

(a) mathematical **ordered pairs** in the xy-coordinate plane

<u>we write:</u>	<u>magnitude</u>	<u>direction</u>
(3,0) m/s	3 m/s	positive-x
(0,3) m/s	3 m/s	positive-y

(b) map directions

ex / An airplane is flying with a velocity of:

<u>we write:</u>	<u>magnitude</u>	<u>direction</u>
161 km/h,NNW	161 km/h	NNW (North by Northwest)

(c) in trigonometry, the <u>direction angle</u>, θ , is defined as the angle measured counterclockwise (ccw) from the positive x-axis.

<u>we write:</u>	<u>magnitude</u>	direction
$5 \text{ m/s}, \theta = 53^{\circ}$	$5 \mathrm{m/s}$	53° ccw from positive x-axis

(d) in navigation, compass <u>headings</u> or <u>bearings</u> are angles measured clockwise (cw) from North

<u>we write:</u>	<u>magnitude</u>	<u>direction</u>
25 knots, bearing of 90°	25 nautical miles/h	East

*Be careful with winds. Their headings are the direction <u>from</u> which they are blowing. Hence, a west wind blows east!

In three dimensions, it is usually best to use an xyz-coordinate system and **ordered triples**.

<u>we write:</u>	<u>magnitude</u>	<u>direction</u>
(-2,0,0) m/s	2 m/s	negative-x
(0,7,0) m/s	7 m/s	positive-y
(0,0,9) mi/h	9 mi/h	positive-z

The **graph** or geometric representation of a vector (notation: \overrightarrow{v}) is an arrow or a directed line segment.

ex/ Displacement is a vector concept.

In one dimension, we can represent a displacement to the right and to the left on an axis. $\overrightarrow{w} = -1m$ $\overrightarrow{v} = 3m$ $\overrightarrow{v} = 3m$ $\overrightarrow{v} = 3m$ $\overrightarrow{v} = am$ $\overrightarrow{v} = a$

Notice that the two graphs on the right represent the same vector. They each have the same magnitude and the same direction. The middle graph represents a displacement from the origin and is said to be in **standard position**.

In two dimensions, the graphs may be angled up or downward.

Notice that the two graphs represent the same displacement vector, two meters to the right and two meters upward. (notation: The magnitude of the vector, \overrightarrow{v} , is written without the " \rightarrow " symbol: $v=2\sqrt{2}m$) The direction angle or direction is 45° (ccw from the positive x-axis).

In three dimensions, we primarily use what is called a "righthand" xyz-coordinate system. An example of one is shown below.

A <u>unit vector</u> is a vector whose magnitude is one unit. (notation: If $\vec{v} = (3,0)$, then the unit vector in the same direction would be written, $\hat{v} = (1,0)$.)

Certain unit vectors are the basis for our coordinate systems. In two dimensions, we write: $\hat{\mathbf{i}} = (1,0)$ and $\hat{\mathbf{j}} = (0,1)$. In three dimensions we write: $\hat{\mathbf{i}} = (1,0,0)$, $\hat{\mathbf{j}} = (0,1,0)$, and $\hat{\mathbf{k}} = (0,0,1)$.

<u>Scalar Multiplication</u> is a mathematical operation which is like a magnification of a vector. If k (a **scalar**) is a constant and $\overrightarrow{v} = (a,b)$, then $\overrightarrow{kv} = (ka,kb)$.

ex / Let k=3 (magnification factor)

and let $\overrightarrow{v} = (1,1)$, then $3\overrightarrow{v} = (3,3)$ (a longer vector)

If k< 0 (negative), then the new vector direction is turned around (opposite). ex/Let k = -2 and let $\overrightarrow{r} = (3,4)$, then $-2 \cdot \overrightarrow{r} = (-6,-8)$.

<u>Vector Addition</u> is the summing of two vector effects. If $\overrightarrow{u} = (3,0)$ miles and $\overrightarrow{v} = (0,4)$ miles are two displacement vectors, then $\overrightarrow{u} + \overrightarrow{v} = (3,4)$ miles represents the "sum" of these two separate displacements. We could also have written: $\overrightarrow{u} = 3\hat{i}$ and $\overrightarrow{v} = 4\hat{j}$ yielding $\overrightarrow{u} + \overrightarrow{v} = 3\hat{i} + 4\hat{j}$, miles.

One tends to see first a displacement to the right followed by a displacement upward. With vectors, both parts of the **sum** or **resultant** vector may occur simultaneously.

ex/ Force is a vector concept. Let $\overrightarrow{F_1}=3$ lb pull, in the positive-x direction, and let $\overrightarrow{F_2}=4$ lb pull, in the positve-y direction. Now $\overrightarrow{F_1}+\overrightarrow{F_2}=5$ lb pull, at a 53° angle with the x-axis. Here both forces were acting simultaneously to produce a net effect.

Recall the right triangle definitions of the <u>sine</u>, <u>cosine</u>, and <u>tangent</u> trigonometry functions.

Problem Set 1.0

- 1. We define <u>speed</u> to be the magnitude of velocity. If $\overrightarrow{v} = (5,12) \text{ m/s}$ is the "take-off" velocity of a long jumper, what is it's initial speed?
- Winnie the Pooh's balloon has burst. As he falls, he reaches a "terminal velocity" of -15 k, m/s. What is Pooh's speed when he hits the mud puddle?
- 3. Broom-Hilda's top speed is 40 km/h. If she is flying at this "air speed" into a "headwind" of -50 km/h, what is her net velocity?

- 4. Now Broom-Hilda is flying with an air speed of 30 km/h at a heading of 90°. A west wind is blowing with a speed of 15 km/h. What is Broom-Hilda's resultant velocity?
 - 5. Garfield has just booted Odie giving him an initial velocity of (3,4,12) m/s. What is Odie's initial speed?
 - 6. Garfield is working on a 2-dimensional trigonometry problem. As an experimental physicist, he sends his friend, Odie, from (0,0) with a speed of 8 m/s and a direction angle of 37°. What point will Odie be passing when Garfield's stopwatch reads 7 sec?
 - 7. Calvin and Hobbes are tugging on an atomicpowered ray gun. Calvin pulls with a force of (2,2) N (newtons) and Hobbes pulls with a force of (-5,2) N. What is the magnitude of the net force on the gun, and in what direction does it move?

If $\overrightarrow{v} = (a,b)$ and $\overrightarrow{u} = (c,d)$, then the <u>difference vector</u> between \overrightarrow{u} and \overrightarrow{v} , $\overrightarrow{u} - \overrightarrow{v}$, is (c-a,d-b)

There can be a confusion with the use of ordered pairs to represent vectors since in elementary algebra, ordered pairs were used exclusively to designate points in a plane. Suppose, for example, we start at a point, S(3,1), and end up at a point, T(1,2). The **displacement vector** would also be represented by an ordered pair, (-2,1). This vector is obtained by subtraction and is an example of a **difference vector**. In fact, we can associate **position vectors**, s and

 \overrightarrow{t} , with the points, S and T. Position vectors are always drawn in standard position bound to the origin, while displacement or difference vectors are "free" vectors which can be graphed anywhere. Notice how $\overrightarrow{t} - \overrightarrow{s}$ was drawn as a free vector not bound to the origin.

Be careful, vector graphs do not usually represent points or paths of motion. ex/If $\overrightarrow{r_1}(6,1)$ represents our initial position, and $\overrightarrow{r_2}(9,1)$ represents our final position, then the displacement from $\overrightarrow{r_1}$ to $\overrightarrow{r_2}$ is (3,0). This is also called the **change in position** (notation: $\Delta \overrightarrow{r}$).

ex/If $\overrightarrow{v_1}$ (-3,0)m/s is our initial velocity, and $\overrightarrow{v_2}$ (-7,0)m/s is our final velocity, then the difference between $\overrightarrow{v_2}$ and $\overrightarrow{v_1}$ is (-4,0)m/s. This is also called the **change in velocity** (notation: $\Delta \overrightarrow{v}$). (This difference vector is not a displacement vector.)

ex / If $x_{\underline{T}}$ 4m and $x_{\underline{T}}$ 1m are initial and final positions, respectively, then $x_{\underline{T}}x_{\underline{1}}$ or $\Delta x = -3m$. (Notice that in one dimension, the vector symbol " \rightarrow " is usually dropped.)

- The <u>zero vector</u> has zero magnitude and has any direction. We write $\overrightarrow{0} = (0,0)$ or (0,0,0).
- Two nonzero vectors, \overrightarrow{u} and \overrightarrow{v} , are **parallel** iff $\overrightarrow{u} = k \overrightarrow{v}$ for some $k \in \Re$ eals. Two nonzero vectors are parallel iff one is a **scalar multiple** of the other. ex/(3,1,-6) and (6,2,-12) are parallel vectors. Try k=2.

ex/ (-3,4) and (3,-4) are parallel vectors with opposite directions. Try k=-1.

- Two nonzero vectors are **perpendicular** or **orthogonal** iff they form a right angle when drawn in standard position bound to the origin.
 - ex/(3,4) and (4,-3) are orthogonal vectors.
 - ex / Also, $(3,4) \perp (-4,3)$.