D. Composite Functions

The composition of g with f : h(x) = g(f(x)) or 
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Below is our composite function box, H, with h(x) = g(f(x)).


Ex/ Let 
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3. In general, 
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 Since there is no guarantee that all the f(x)’s will be in 

the domain of g, we can’t be guaranteed that all the range values of G will come out of this bottom or last G-box. Still, everything that finally comes out 

of the last G-box (range of H) will be at least a subset of the range of G.

Ex/ Here since f(x) is a square root function, the f(x)’s will be nonnegative. We 

can’t let f(x) = 0 though as we mentioned above. so f(x) > 0 go into G. Notice 

that since g(x) = -1/x, it turns all these positive f(x)’s into negatives, hence…
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Def/ 
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Ex/ An algebraic approach is to actually put 
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 into the g(x) = -1/x  function as ‘x’ obtaining 
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. Often this can simplify our analysis. Here we can see that Dh is x > 1 and that the range values will be all negatives.
D. Composite Functions (continued)


Another visual approach to composite functions. 
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Example Problem/ Given 
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(a) Find f(g(x)) in terms of x  (b) Find 
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(a) Plug in 
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 for ‘x’ in f(x) to get: 
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(b) Approach #1/ Our first restriction involves the domain of g. 
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Our second restriction requires that the g-range values, 
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f-function which requires 
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Combining these two restrictions we obtain: 
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 EMBED Equation.DSMT4  [image: image20.wmf]{
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     Approach #2/ Instead, consider the 
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 and also we now need 
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Solving this last double inequality we get: 
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Squaring both sides, we get: 
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1. � EMBED Equation.DSMT4  ��� In words,


only a subset of the domain of f will generally run all the way through this ‘function box’, H.


ex/� EMBED Equation.DSMT4  ��� but � EMBED Equation.DSMT4  ���


Why? Why didn’t ‘1’ run all the way through the function box?


2. In general, � EMBED Equation.DSMT4  ��� (empty set). So x = 1 gets thru the F-box,  changing to f(1) =� EMBED Equation.DSMT4  ��� but 0 won’t get through the G-box since 


-1/0 would be undefined. Everything else in the Df works fine.





Let � EMBED Equation.DSMT4  ���


     and  � EMBED Equation.DSMT4  ���.


Show that � EMBED Equation.DSMT4  ���?


1. Notice that although Df = � EMBED Equation.DSMT4  ��� that 


Dh = � EMBED Equation.DSMT4  ��� � EMBED Equation.DSMT4  ���only. This is because 


� EMBED Equation.DSMT4  ���


2. Notice there is nonempty intersection of f-range values and g-domain values.


� EMBED Equation.DSMT4  ���.


3. Continuing we see that 3 and 7 are mapped to � EMBED Equation.DSMT4  ���


Again we have, � EMBED Equation.DSMT4  ���.





This set diagram shows the subset relationships and the importance to the intersection of Rf with Dg. 
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[image: image42.wmf]2 and * which then form the range of h.
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