E. Translation and Change of Scale and Reflections


1. Translation


Theorem/ Given f(x) with Df = [a,b], if g(x) = f(x-c), 

then *Dg = [a+c, b+c] and Rg = Rf.


Since g(x) = f(x-c) is well-defined when and only when
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Note: The graphic effect of this translation is to shift the f-curve ‘c’ units

to the right (where c > 0) or 
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 units to the left (where c < 0, negative).
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Theorem/ Given f(x) with Df = [a,b] and Rf = [
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Then Dg = Df and *Rg = [
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hence: 
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Note: The graphic effect of this translation is to shift the f-curve ‘d’ units



upward (where d > 0) or  
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 units downward (where d < 0, negative).
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Finally, notice that the domain and range of ‘f’ need not be nice intervals as shown here. 

Ex/ Consider the function, f = 
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. Here Rf = 
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which is not an interval. Still, if we define g(x) = f(x) + 5, then we’ll find 

the ‘steps’ shifted upward 5 units and Rg = 
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E. Translation and Change of Scale and Reflections (continued)


2. Change of Scale



Thm/ Given f(x) with Df = [a1,a2], if g(x) = f(bx) with b > 0,



then  *Dg = 
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 and Rg = Rf.



Since g(x) = f(bx) is well-defined if and only if
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abxab

££>

 
[image: image16.wmf]12

 , qed.

aa

bb

x

££


The graphic effect of this ‘change of scale’ is to shrink the curve horizontally  (toward the y-axis, where b > 1) or stretch the curve horizontally (away from the y-axis, where 0 < b < 1). 
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Thm/ Given f(x) with Df = [
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] and Rf = [b1,b2], if g(x) = 
[image: image19.wmf]a

×

f(x), 
[image: image20.wmf]0

a

>

,



then Dg = Df and *Rg = [
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we have g(x)
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The graphic effect of this ‘change of scale’ is to stretch the f-curve vertically



(away from the x-axis, where 
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> 1) or to shrink the f-curve vertically (toward 

 

the x-axis, where 0 < 
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 < 1).
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Again, the domain and range of any function, f, need not be an interval.



Ex/ f(x) = sec x  has domain: Df = 
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and range: Rf = 
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. Then if we definge g(x) = 3
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Rg = 
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. A vertical stretching away from the x-axis.
E. Translation and Change of Scale and Reflections (continues!)


3. Reflections 



Thm/ Given f(x) with Df = [a1,a2], if g(x) = f(-x),



then *Dg = [-a2 , -a1] and Rg = Rf.




Since 
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 for all ‘-x’ in the domain of f,




when we multiply both sides by ‘-1’, we get:
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Note the graphic effect is to reflect the f-curve about the y-axis.
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Thm/ Given f(x) with Rf = [b1,b2], if g(x) = -f(x),



then Dg = Df  and  *Rg = [-b2 , -b1].




Since 
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, we can multiply both sides by ‘-1’ and get:





[image: image36.wmf]21

-b  -f(x)  -b

££

 
[image: image37.wmf]21

-b  g(x)  -b

Û££

 qed.



The graphic effect here is to simply reflect the f-curve about the x-axis.
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4. Combinations!



Ex/  Graph g(x) = y = -f(x-2) + 1 (You’ll have to draw your own f-curve!)



Shift the f-curve 2 units left and then flip (reflect) about the x-axis.




Finally raise this new curve 1 unit upward.

Ex/ Graph y = 3(x-2)2 + 1 




Remember this parabola from algebra? The ‘3’ just made the parabola 




look steeper. What’s the vertex? (?,?)

Ex/ Let � EMBED Equation.DSMT4  ���. 


Now define � EMBED Equation.DSMT4  ���


Then by the theorem above, � EMBED Equation.DSMT4  ���


Notice the ‘right shift’ of the f-curve by 2 units.





Ex/ Let f(x) = Sin-1x, Df = [-1,1] � EMBED Equation.DSMT4  ��� Rf =� EMBED Equation.DSMT4  ���.


Now define � EMBED Equation.DSMT4  ���, then Dg = Df and


Rg = � EMBED Equation.DSMT4  ���. Notice the upward shift of the 


f-curve by � EMBED Equation.DSMT4  ��� units. 





Ex/ Let f(x) = Tan x , Df =� EMBED Equation.DSMT4  ���open interval.


Now define g(x) = f(2x) = Tan 2x.


Then by the theorem above, Dg = � EMBED Equation.DSMT4  ���. 


See how the outer f-curve was squeezed down by a factor of ‘2’ (b > 1)? The dotted vertical asymptotes for g are now:  � EMBED Equation.DSMT4  ���.











Ex/ Let � EMBED Equation.DSMT4  ���.


Now define g(x) = 3� EMBED Equation.DSMT4  ���f(x) = � EMBED Equation.DSMT4  ���.


Then by the theorem above, Rg = [0,3].


See how the graph of the f-curve is stretched 


Vertically upward by a factor of 3 (� EMBED Equation.DSMT4  ���> 1)? 








Ex/ Let � EMBED Equation.DSMT4  ���.


Define g(x) = f(-x) = � EMBED Equation.DSMT4  ���.


Then by the theorem above,� EMBED Equation.DSMT4  ���.


The g-curve is the reflection of the 


f-curve about the y-axis. 





Ex/ Let � EMBED Equation.DSMT4  ��� and


� EMBED Equation.DSMT4  ��� ‘1’ is the max value. 


Then define � EMBED Equation.DSMT4  ���


By the theorem above, � EMBED Equation.DSMT4  ���


g is the reflection of f about the x-axis.
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