F. Inverse Functions


1. First we’ll study inverse relations.

Every relation (ie, any set of ordered pairs) has an inverse relation.


Ex/ If A = 
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1,3,2,7,3,5,3,9

, then the inverse of A (denoted A-1) 

is simply the set of ordered pairs with the x’s and y’s interchanged. 


A-1 = 
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By the way A-1 is a function but A is not. With A, we don’t know where to ‘send’ the 

domain element ‘3’.
Ex/ B =
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 is a function, but B-1 =
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 is not.  Notice the simple

interchange of the ‘x’ and ‘y’ symbols. Another way of writing an equation for the

sideways parabola, x = y2, is to write: 
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Interchanging the ‘x’ and ‘y’ coordinates means (-3,9)
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 iff  (9,-3)
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This results geometrically in symmetry w.r.t. the line, y = x.

2. One-to-one Functions 

The central problem here is to understand which functions even have inverses which 


are functions? Answer: To have an inverse function, a function must pass the 


‘horizontal line test’. (Notice above that function, B, does not pass that test.)

Another way of expressing this condition is that a function needs to be ‘one-to-one’. 

Ex/ Consider two functions: 
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With F, there is not a one-to-one correspondence between domain and range elements.

With G, for every element in its domain, there is one and only one associated range 

element. 
A function, f, is one-to-one (1-1) if for each y0 in the range 
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 exactly one x0 in its 

domain such that f(x0) = y0.  For those who like formal definitions…

Def/ A function, f, is one-to-one (1-1) iff for any (x1,y1),(x2,y2) 
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f, y1=y2 
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 x1=x2 .

Such a function would pass both the vertical and horizontal line tests.

3. Inverse Functions
Def/ Functions, F and G, are inverse functions (of each other) iff
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We used ‘y’ instead of ‘x’ in the 2nd statement to emphasize that none of the x’s from the domain of F have to be the same as the y’s from the domain of G. For this reason, it would be incorrect and at least misleading to simply require: f(g(x)) = x = g(f(x)).

Thm/ Given inverse functions, f and g = f-1,  Df = Rg  and  Rf = Dg 

Ex/ Notice we could have just drawn the lines from ‘square’ and ‘4’ back to

the same circle as the Df . (Df = Rg where g = f-1)
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4. More Examples


(a) Linear Functions: y = mx + b (oblique lines) are all one-to-one.



To find the inverse we interchange the ‘x’ and ‘y’ and ‘solve for the new ‘y’.



x = my + b 
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 (reciprocal slopes)



(b) The cubic function: y = x3 has an inverse function.



x = y3 
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(c) The reciprocal function: y = f(x) = 1/x  has for it’s inverse, itself.



x = 1/y 
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= f(x).


Inverse functions ‘undo’ what the first function did to an element. A cube root of a 


cube gets us back to where we started. Hence f-1(f(x)) = x.  In example (b) 
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Cube root and cubing just sound like inverse operations! 

(d) How about multiplying by 3 and dividing by 3? Sure! Try f(x) = 3x and 

f-1​(x) = g(x) = x/3. 

(e) How about adding 5 and subtracting 5? Try f(x) = x + 5 and g(x) = x – 5.


5. What about y = x2

Well, try the square root function and the squaring function?


If we start with the squaring function, y = x2, we immediately run into trouble.


This concave-up parabola does not pass the horizontal line test (it’s not 1-1).


What we have to do is ‘restrict’ the domain of f(x) = x2 so that it becomes 1-1.


Typically we define f(x) = x2 with Domain: 
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. (The right side of the parabola.)


This restricted function does have an inverse and yes, it is: g(x) = y = 
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.

What if we start with the square root function, y =
[image: image22.wmf]x

? This function is one-to-one.


Let’s interchange the ‘x’ and the ‘y’ and see what we get… (This gets messy!)
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 but wait! We just said y = x2 doesn’t have an inverse? 
The implication arrow ‘
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’ means if (4,16) works in the 1st equation, it will work in the 2nd. However, it doesn’t work the other way. It is not a double arrow ‘
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’. 
The double arrow ‘
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’ is a ‘mutual implication’ meaning that a solution to one equation is a solution to the other and vice versa. The two equations here are not ‘equivalent’. The truth sets for the two equations are not the same. (-3,9) works in the 2nd equation but not the 1st.
 (Perhaps it’s easier to just note that the domain of one function (y=x2) isn’t matching the range of the other function (y=
[image: image27.wmf]x

).)
By the way, have you tried solving the following equation for ‘y’ by taking the square 

root of both sides?  Start with y2 = x  and  then take the (principal) square root of both sides to get: 
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. Now this looks equivalent to y =
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 but it’s not! You may recall from algebra that 
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6. Inverse Trig Functions
Since our 6 basic trig functions are ‘periodic’ and repeat values, they can’t be 1-1.

We define Principal Trig Functions by restricting the domains of each. By convention, 

capital letters are used for:

(a) y = Sin x , D=
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6. Inverse Trig Functions (continued)

 (b) y = Cos x , D=
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 and  y = Cos-1x has D=[-1,1] and R: [0, 
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 (c) y = Tan x , D=
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 R = Reals   and   y = Tan-1x  has D = Reals and R=
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(d) y = Cot x , D=
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 R = Reals   and    y = Cot-1x has D = Reals and R=
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Go ahead and draw in and label the missing asymptotes! (Extra credit!)


In a trig class you’ll often see the inverse functions defined as follows:


Sin-1 = 
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Cos-1 = 
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Tan-1 = 
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Cot-1 = 
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We’ll worry about Csc-1(x) and Sec-1(x) later!  [Just kidding about that extra credit!] 
Show here are the graphs of B and B-1 (parabolas).


Notice the concave-up parabola passes the vertical line test (B is a function). Imagine a y = x line drawn on this graph. Perhaps you can see the symmetry of the two graphs wrt that 45 degree line.
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