Inequalities and Absolute Value
A. Theorems and Proofs
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Axioms of Order



(i) Transitive Axiom  
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(ii) 
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(a) x < y







(b) x = y







(c) x > y
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(Addition/Subtraction Theorem)


Proof: (i) 
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Corollary/ 
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 (A positive plus a positive is a positive.) 



Proof: 
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(Multiplication/Division Theorem)


Proof: (ii) 
[image: image17.wmf] (0)   By Def of ">".

ababnn

>Þ-=>




The plan: Get to an equation, work with equality, then get back to an inequality.
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   Hence, 
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  (Switch-the-inequality-sign Theorem)


Proof: (i) 
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   Hence, ac < bc,  qed.

Inequalities and Absolute Value
A. Theorems and Proofs (continued)
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 (The sum of the bigger #’s is bigger



than the sum of the smaller #’s.)
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   then (a-b) + (c-d) > 0  (‘postive + positive = positive’ corollary)



   (a + c) – (b + d) > 0 (Using associative & commutative axioms of ‘=’)



   a + c > b + d, qed.


Thm 5/ 
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 (Cross-subtraction Theorem)


Proof: 
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   Now use Thm 4 (above) to get:  
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   a – d > b – c, qed. 



Ex/ Suppose 2 < x < 4 and 3 < y < 5, compare addition vs subtraction
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 (easy!)                 -1   < x – y  <  -1   (impossible!)



   So adding ‘double inequalities’ is easy, but to subtract ‘double inequalities’…



   Cross subtract!!! 
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Thm 6/ If a > b > 0  and  c > d > 0, then ac > bd. (The product of the bigger #’s is


greater than the product of the smaller numbers.)



Proof: ac > bc  and bc > bd (By Thm 2 above)



   ac > bd  (Transitive Axiom of ‘>’)



   qed.


Thm 7/ If a > b > 0  and  c > d > 0, then 
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Proof: We’ll be using the following equivalence, 
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   The plan is to show the right-side is positive and hence the left-side also.
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   cd > 0, so we have the right-side 
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   left-side 
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Corollary/ If c > d > 0, then (dividing both sides by cd > 0) 
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Inequalities and Absolute Value
A. Theorems and Proofs (continued)


Thm 8/ 
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Proof: (a) Show 
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   is true for m = k, then it is true for m = k+1. Math Induction Principle says…



   Well, this is easy. Assume that 
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 is true. Now use Thm 6 to obtain:
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. So it’s true for m = k+1, qed. Hence 
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   is true for all positive integers.)




 (b) Show 
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Assume the opposite of what we’re trying to show. Then show that this  

 

   assumption leads to a contradiction, therefore… Okay, here we go…



   Suppose 
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   However, this leads to: 
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 which contradicts the Trichotomy Axiom.


   Hence 
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  Now we’ll combine parts (a) and (b) to get: 
[image: image52.wmf]mm

nn

ab

>



Thm 9/ 
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Proof:  For x, y = 0 we can just substitute above and verify. So consider x, y > 0.
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Hence: 
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Ex/ Lucy goes uphill at 2 mph and downhill at 4 mph. What is her average 



speed?



     Avg Speed = 
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Inequalities and Absolute Value
A. Theorems and Proofs (continued)


Some Inequality Proofs:


Ex 1/ Prove: 
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Verification Method


Derivation Method 


(Here we begin with the statement
(Here we start from a known fact and

to be verified and show that it is
show that it leads us, by implication, to


equivalent to an identity.)


the desired result.)
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(Note the use of the double arrow 
  (Note the use of the single arrow 

          or mutual implication.) 
  

  or implication.)
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(So the original statement is
            (This is the desired result.)


equivalent to an identity.)



Ex 2/ Prove: (i) 
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   (ii) Using (i) above, we have: 
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        Adding them together we get: 
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        Dividing by 2 we have: 
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Ex 3/ Prove:   
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Proof: Let a = x3 , b = y3 , c = z3. 


   Now x2 + y2 + z2 
[image: image71.wmf]³

 xy + xz + yz  (See proof above (ii).)


   Hence  x2 + y2 + z2 – xy – xz – yz 
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 0   and    x + y + z 
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   (x + y + z)( x2 + y2 + z2 – xy – xz – yz) 
[image: image74.wmf]³

 0 which equals the factorization of…


   x3 + y3 + z3 – 3xy 
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   Rewriting, we’re done…  
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Inequalities and Absolute Value
A. Theorems and Proofs (continued)


Some Inequality Proofs:


Ex 4/ Cauchy Inequality (for 2 dimensions) – I wonder what this one is all about?

Still, it must be famous since some guy named Cauchy got his name on it!
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Proof: Watch this trick!


   (a2 + b2)(c2 + d2) = a2c2 + a2d2 + b2c2 + b2d2 = (ac+bd)2 + (bc-ad)2 (Cancel the 2abcd!)


   Since 
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   (a2 + b2)(c2 + d2) 
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 (ac+bd)2  with equality iff bc – ad = 0  (qed)
Okay, an easy algebraic proof if you know the trick, but what does it mean? 

Consider the following geometric interpretation of this theorem.







Consider the triangle below with vertices P,Q,O.







OP = (a2 + b2)1/2, OQ = (c2 + d2)1/2, and we can
   


      Q(c,d)

find PQ using the Law of Cosines:







       (PQ)2 = (OP)2 + (OQ)2 – 2(OP)(OQ)cos
[image: image81.wmf]q

 
                           
[image: image82.wmf]q



  P(a,b)
find PQ using the distance formula from P to Q:







        PQ = 
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 Now expanding the first three terms and canceling…
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   Notice that (i) ac+bd is the dot product of vectors (a,b) and (c,d) and



 (ii) 
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   Now recall that the angle between two vectors is given by:
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 (qed)

Okay, back to our squaring both sides... 
[image: image94.wmf]cos1

q

£

  
[image: image95.wmf](

)

(

)

(

)

2

2222

1

acbd

abcd

+

Þ£

++

 (qed).

Finally we get equality iff 
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, which is when the 2 (nonzero) vectors (a,b) and 

(c,d) are parallel (which occurs iff (a,b) and (c,d) are ‘proportional’.)

3-Dimensional Version? 
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with equality when nonzero vectors (x1,y1,z1) and (x2,y2,z2) are parallel.






_1089261963.unknown

_1089353642.unknown

_1089442122.unknown

_1089696851.unknown

_1089698282.unknown

_1089700262.unknown

_1089700981.unknown

_1089701191.unknown

_1089701440.unknown

_1089701757.unknown

_1089701088.unknown

_1089700941.unknown

_1089698715.unknown

_1089698827.unknown

_1089699045.unknown

_1089699732.unknown

_1089698957.unknown

_1089698770.unknown

_1089698546.unknown

_1089697249.unknown

_1089697747.unknown

_1089698180.unknown

_1089697297.unknown

_1089697127.unknown

_1089697207.unknown

_1089696889.unknown

_1089662502.unknown

_1089663204.unknown

_1089663894.unknown

_1089663937.unknown

_1089663314.unknown

_1089662848.unknown

_1089442395.unknown

_1089442580.unknown

_1089442165.unknown

_1089359195.unknown

_1089360231.unknown

_1089373832.unknown

_1089441511.unknown

_1089373766.unknown

_1089359403.unknown

_1089360153.unknown

_1089359907.unknown

_1089360031.unknown

_1089359314.unknown

_1089358981.unknown

_1089359052.unknown

_1089353717.unknown

_1089353871.unknown

_1089353685.unknown

_1089302344.unknown

_1089351192.unknown

_1089353346.unknown

_1089353578.unknown

_1089352850.unknown

_1089350909.unknown

_1089351106.unknown

_1089350823.unknown

_1089262606.unknown

_1089302220.unknown

_1089302295.unknown

_1089262870.unknown

_1089262412.unknown

_1089262491.unknown

_1089262134.unknown

_1088614523.unknown

_1088614908.unknown

_1088615385.unknown

_1089261831.unknown

_1089261923.unknown

_1088615011.unknown

_1088615054.unknown

_1088615215.unknown

_1088614974.unknown

_1088614759.unknown

_1088614848.unknown

_1088614692.unknown

_1088614084.unknown

_1088614212.unknown

_1088614403.unknown

_1088614153.unknown

_1088613921.unknown

_1088614058.unknown

_1088613869.unknown

