Inequality Proofs
1. Prove: 4x(x + y) ≤ 8x2 + y2 
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4x2 + 4xy ≤ 8x2 + y2 
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 0 ≤ 4x2 − 4xy + y2 
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 0 ≤ (2x2 − y2) 


Note the mutual implications indicate that each statement is 'equivalent' to the other  


(meaning they each have the same 'truth set'). The last statement is true for all x, y.  
Hence so also is the first statement, 'which was to be demonstrated'.

2. Determine under what condition(s) the following statement is true.
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Multiply by x2y2       x3 + y3 ≥ xy2 + x2y = xy(x + y)


Since x3 + y3 = (x + y)(x2 − xy + y2), we can divide both sides by (x + y)





   x2 − xy + y2 ≥ xy




   x2 − 2xy + y2 ≥ 0 





        (x − y)2 ≥ 0   Which is a tautology (true for all x,y > 0).

3. Under what condition(s) is the following statement true?
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My thought was to focus in on (a + b)2 = a2 + 2ab + b2 > a2 + b2 …


Yup, this ought to work.





(a + b)2 = a2 + 2ab + b2 > a2 + b2 since a,b > 0


Now take reciprocals… 
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When we now multiply both sides by a2 − b2, we have equality when a = b


and maintain the 'less than' relationship as long as a > b.
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Finally, since a2 − b2 = (a + b)(a − b) , the left side becomes…
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   provided a > b > 0

4. Consider:  x4 + y4 > x3y + xy3  for x,y > 0 and 
[image: image9.wmf]xy

¹



2x2y2 gets us a perfect square trinomial on the left. Let's try subtracting though!



x4 − 2x2y2 + y4 > x3y + xy3 − 2x2y2


(x2 − y2)2 > xy(x2 −2xy + y2) = xy(x − y)2   a bonus perfect square trinomial!



(x2 − y2)(x2 − y2) > xy(x − y)2    there's some canceling here someplace!



     (x + y)(x + y) = (x + y)2 > xy      next, we'll square the binomial 




      x2 + 2xy + y2 > xy        and subtracting xy from both sides…





x2 + xy + y2 > 0    So if all the steps were 'reversible' we have…





 An identity (true for x,y > 0 and 
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Inequality Proofs
5. Consider:  
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  for a,b > 0   (On this one I cross-multiplied and …)

Let's start with (a − b)2 ≥ 0  which seems innocuous enough!


a2 − 2ab + b2 ≥ 0 
[image: image12.wmf]Û

 a2 + b2 ≥ 2ab 
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 ab(a2 + b2) ≥ 2a2b2


      
[image: image14.wmf]Û


a4 + a3b + ab3 + b4 ≥ a4 + 2a2b2 + b4  adding a4 and b4 to both sides
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a3(a + b) + b3(a + b) ≥ (a2 + b2)2
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 (a + b)(a3 + b3) ≥(a2 + b2)(a2 + b2) now divide both sides by (a+b)(a2 + b2)
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6. Use 
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 to show that 
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   Geometric Mean ≥ Harmonic Mean

This is an easy one!  Just square the left side to get: 
[image: image21.wmf]121

0

ab

ab

-+³



Now move the middle term over.
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Finally exchange the geometric mean with the fractions…  
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  qed

7. Show that  (a2 − b2)(a4 − b4) ≥ (a3 − b3)2    Again, I worked backward first…



a2b2(a − b)2 ≥ 0 
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 a2b2(a2 − 2ab + b2) ≥ 0  
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  a4b2 − 2a3b3 + a2b4 ≥ 0

Now we'll move some terms over and add a6 and b6 to both sides…
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 a6 − 2a3b3 + b6 ≥ a6 − a2b4 − a4b2 + b6  
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 (a3 − b3)2 ≥ (a2 − b2)(a4 − b4)

8. Show that (a2 − b2)2 ≥ (a − b)4  
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a, b such that ab ≥ 0 


An easy one!  
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                 If a = b , then the statement is true. Just 'plug and check'.

       If a does not equal b, then (a − b)2 is positive and we can divide to get:




(a + b)2 ≥ (a − b)2 
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 a2 + 2ab + b2 ≥ a2 − 2ab + b2 
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 4ab ≥ 0  
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 ab ≥ 0 qed

9. Show that (a2 + b2)(a4 + b4) ≥ (a3 + b3)2  (Same as #7 above)



a2b2(a − b)2 ≥ 0 
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 a2b2(a2 − 2ab + b2) ≥ 0  
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  a4b2 − 2a3b3 + a2b4 ≥ 0


a6 + a4b2 + a2b4 + b6 ≥ a6 + 2a3b3 + b6 
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 (a2 + b2)(a4 + b4) ≥ (a3 + b3)2
10. Show that a2c + b2c + a2b + c2b + b2a + c2a ≥ 6abc


The hint was "Multiply a2 + b2 ≥ 2ab by c". Hmm.



Well consider first (a − b)2 ≥ 0  and  expand to get a2 − 2ab + b2 ≥ 0



Now multiply both sides of this by 'c' and it starts to look like the top…



a2c − 2abc + b2c ≥ 0 , so if we do this for (a − c)2≥0 and (b − c)2 ≥ 0
       we get:  a2b − 2abc + c2b ≥ 0 and b2a − 2abc + c2a ≥ 0  and just add all 3 inequalities 

       moving the three '−2abc' terms over to the other side.



a2c + b2c + a2b + c2b + b2a + c2a ≥ 6abc   QED
Inequality Proofs
11. Show that 
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 (Notice, we cannot square both sides here.)


Okay, I did it, but it looks so ugly, there must be a better way!

0 ≤
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12. Show that if a, b, c, d > 0 (with c, d rational numbers), then
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(This part was easy.)
Hint?
 (i) when c = d = 1, then we have (a − b)(a − b) ≥ 0 which is true, but?


well, expanding we can get: 
[image: image45.wmf]22

2

ab

ab

+

³

 Still not sure if this is useful!


 (ii) when c = d = ½ , then we have 
[image: image46.wmf](

)

(

)

0

abab

--³




hence  
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   Geometric Mean ≤ Arithmetic

Well, if c = d = n, then we'll always have (an − bn)2 and 
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Forget the hint! Thm 8 says if a > b, then ac > bc and ad > bd  and we're done.


If a < b then  ac − bc < 0 but so will ad − bd < 0 and we're okay again. 


If a = b then we're okay again. 

13. Show that (a2 − b2)(c2 − d2) ≤ (ac − bd)2  (Cauchy Inequality for 2 dimensions)

and that (a2 + b2)(c2 + d2) ≥ (ac + bd)2  Also show equality holds iff ad = bc. 

     Equality is shown quickly by expanding to get −b2c2 − a2d2 = −2abcd which is

equivalent to 0 = (bc − ad)2 iff ad = bc  and if we don't have zero, we must have…

    (i) a2c2 − b2c2 − a2d2 + b2d2 ≤ a2c2 − 2abcd + b2d2  
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 0 ≤(bc − ad)2 , okay

    (ii) a2c2 + b2c2 + a2d2 + b2d2 ≥ a2c2 + 2abcd + b2d2 
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 (bc − ad)2 ≥ 0 , okay
Finally, see the note for 'the' proof! 
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