THEORY OF EQUATIONS – Notes                            p.7

C. Cubic and Quartic Equations

ex/ Transform the cubic equation, x3 + bx2 + cx + d = 0 into the reduced cubic 


with the 'x2' term missing. (see the example on page 6)  
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Since b/1 = − (r1 + r2 + r3) , we'll need r1 + r2 + r3 = −b



So we will diminish all three roots by −b/3 , obtaining: P (x − b/3) = 0



We are actually increasing each root by b/3.
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The x2-terms cancel out (or they should!) and to distinguish this new function



from the old one, we'll use 'y' as the independent variable:
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with coefficients,  p = 
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So we can take any cubic equation, a3x3 + a2x2 + a1x + a0 = 0 , and divide by a3  


to get, x3 + bx2 + cx + d = 0, and then eliminate the x2-term to get: 
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(Can you guess where we're going with all this?!?)


Now introduce 2 unknowns, u and v, whose sum is a root of this 'reduced cubic'.


Substituting we get:  (u + v)3 + p(u + v) + q = 0




u3 + 3u2v + 3uv2 + v3 + p(u + v) + q = 0




u3 + v3 + 3uv(u + v) + p(u + v) + q = 0 




     u3 + v3 + (3uv + p)(u + v) + q = 0


Condition 1 -  u + v was a root of the reduced cubic


Condition 2 -  3uv + p = 0  (v = −p/3u)




Now we have:   u3 + v3 + q = 0   and substituting with v = −p/3u
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 (which is a quadratic in u3, whoa!)
By the quadratic formula: 
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 where R = 
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Let u3 = A = 
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 and let v3 = B = 
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 (since u3 + v3 + q = 0 above)


From our study of complex numbers (DeMoivre's Theorem) the 3 cube roots of A 

 are: u = 
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where 
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So if u+v is a root of the reduced equation, then u+v − b/3 is a root of the original, 

but which u+v combination? There are 9 combination! 

With the condition that 3uv + p = 0 (uv = −p/3) , the only pairs of u and v satisfying

this condition yield the following 3 solutions to the original equation. 
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Wait a second! Who checked to see if u = 
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 and v = 
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 satisfied uv = −p/3 ?


uv = 
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 okay, this pair worked, so


x1 = 
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 + 
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 − b/3 , so what are the other two solutions?

x2 = 
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 − b/3   Well since (1cis 120)(1cis 240) = 1cis 360 = 1 + 0i …

x3 = 
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 − b/3     I can see how the 'omegas' go away! Okay…

Cardan's Formulas – Girolamo Cardano (1501-1576) Ars Magna 1545


http://www.geocities.com/doracy/alunos/Cardano.html
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credit for solving:  x3 + px = q appears to belong to Scipione del Ferro (1465-1526)


credit for solving:  x3 + px2 = q to Nicolo Tartaglia (1500-1557)


Public contests, prestige, and monetary awards kept many math discoveries secret. 


   An algebraic solution to a polynomial equation must be expressed in terms of its 


coefficients by means of formulas involving a finite number of operations of  


addition, subtraction, multiplication, division and extraction of roots.


   Norwegian Niels Abel (1802-1829) first proved in 1824 that polynomial 

equations, quintic (5th degree) and higher cannot be solved algebraically.

ex/ Solve x3 + 9x2 + 18x + 28 = 0  (Recall p = c − b2/3 and q = d − bc/3 + 2b3/27)

     And R = q2/4 + p3/27  with u3 = A = 
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     So we get:  p = 18 − 81/3 = −9  and q = 28 − 54 + 54 = 28


   and  R = −27 + 196 = 169

     A = u3 = −14 + 13 = −1  and B = v3 = −14 − 13 = −27

     So we get:  
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     Cardan's Formulas:

     with b/3 = 3  and  
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x1 = −1 + −3 − b/3 = −7


x2 = 
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x3 = 
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(Oh yeah, the complex conjugate. I guess we didn't have to… )

* When x3 + bx2 + cx + d = 0 with real coefficients, has: 

 (i) 3 distinct roots, R < 0  (This is called the irreducible case. )
(ii) 1 real root,  R > 0   (iii) at least 2 real roots, R = 0 
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Irreducible Case of the Cubic  (when R < 0) where there is no algebraic process to  
find the exact cube roots of complex numbers. Hmm…

Recall:  u3 = A = 
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   and    v3 = B = 
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     Adding these two we get:  −q = 2
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     Multiplying these two to get:   
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     R = q2/4 + p3/27  now substitute for 'R' to get: −p3/27 = 
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Since R < 0 (Irreducible Case), p < 0 and hence 
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 is real, so we may write:



u1 = 
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v1 = 
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           v3 = 
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Condition: uv = −p/3 results in only 3 pairs:  u1 and v1 , u2 and v2 , u3 and v3 


General Solution:



x1 = 
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x2 = 
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x3 = 
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ex/ Solve x3 + 6x2 + 9x + 1 = 0 , p = −3 , q = −1 , R = −3/4 < 0 (3 distinct real roots) 
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  so we have 
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 = 60 degrees with −b/3 = −2



x1 = 2cos 20 −2 
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x2 = 2cos 140 − 2 
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x3 = 2cos 260 − 2 
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 −2.3472
Hey, you didn't have to type this all up!

One more page on 'quartic equations'!
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Solution of the Quartic Equation

P(x) = x4 + bx3 + cx2 + dx + e = 0


Transform to P(x − b/4) yielding the 'reduced quartic' by increasing each of 


the four roots by b/4:  
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Assuming the left side can be expressed as:  (y2 + 2ky + 
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)(y2 − 2ky + m)


where k, 
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, m are to be determined.



y4 + qy2 + ry + s = y4 + (
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+ m − 4k2)y2 + 2k(m − 
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)y + 
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then:   
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+ m − 4k2 = q
or
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+m = q + 4k2


2k (m − 
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) = r 
or
m − 
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 = r/2k
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m = s 

Adding and subtracting the equations above:







m = ½ (q + 4k2 + r/2k)  






and
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 = ½ (q + 4k2 − r/2k)

Whew! Now substitute 
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 and m into that 
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m = s equation…

¼ (q2 + 4k2q + (rq)/(2k) + 4k2q + 16k4 + 2kr − (rq)/(2k) − 2kr − r2/4k2) = s
or   64k6 + 32qk4 + 4(q2 − 4s)k2 − r2 = 0 (the resolvent cubic)

a solvable cubic in k2 !


Any nonzero k2 root of this equation can be used to obtain 
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 and m.


Then the 4 roots can be extracted from the quadratics above, viz.,



y2 + 2ky + 
[image: image73.wmf]l

 = 0   and    y2 − 2ky + m = 0

ex/ Try x4 − 8x3 + 21x2 − 14x − 10 = 0 

Reduced Quartic:  y4 − 3y2 + 6y − 2 = 0

Resolvent Cubic:  16k6 − 24k4 + 17k2 − 9 = 0  (k2 = 1 works! so 
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=−1 and m = 2

Quadratics: y2 + 2y + 1 = 0  and y2 − 2y + 2 = 0 yield


x1 and x2 = 
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x3 and x4 = 
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The first solution was given by Lodovico Ferrari (1522-1560), a pupil of Cardan.

The above solution is basically the same as the one found by Descartes (1596-1650).

Below some cubic equations to solve!
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[image: image114.wmf]w

1. x3 − 9x + 28 = 0   
2. x3 + 9x − 26 = 0

3. x3 + 6x + 2 = 0

4. x3 + 108x + 180 = 0

1. 
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2. p = 9 and q = −26  so R = 
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   So A = u3 = −q/2 +
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 = 13 + 14 = 27  and B = v3 = −q/2 −
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= 13 − 14 = −1

   The equation is already 'reduced' so b/3 = 0

   x​1 = 
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 = 3 − 1 − 0 = 2, Now we'll short cut our work by using the factor   

  theorem:  (x − 2)(x2 + 2x + 13) = 0 and the quadratic formula to get: x = 2, 
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4. p = 108 and q = 180 so R = 
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 (calculator, anybody?)
So A = u3 = −q/2 +
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 = −90 + 234 = 144 and B = v3 = −q/2 −
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 = −90 − 234 = −324
x​1 = 
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5. 
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6. For the 'reduced' equation, p = 3 and q = 8/3, R = 25/9 and x1 = 
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7. 
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8. For x3 + 3x2 + 
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x + 4 = 0, we need to get to the 'reduced' equation where

p = c − b2/3 = 4/3 − 3 = −5/3 and q = d − bc/3 + 2b3/27 = 4 − 4/3 + 2 = 14/3

R = q2/4 + p3/27 = 3844/729 = 622/272 (of course!) Here b/3 = 1 so subtract 1 later.
A = u3 = −q/2 +
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= −7/3 + 62/27 = 20/27,  B = v3 = −q/2 −
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= −7/3 − 62/27 = −104/27
x1 =−1 + 
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10. p = 27 − 9/3 = 24 and q = −9 − (−27) − 2 = 16 with b/3 = −1 so we'll add 1 later.

R = 64 + 512 = 576 and A = u3 = −8 + 24 = 16, B = v3 = −8 −24 = −32
x1 = 1 + 
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12. 
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 = 
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, q = 2, R = 1 − 8 = −7(irreducible case),
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x1 = 2
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5. 4x3 − 9x + 14 = 0	    9. x3 + 12x2 + 30x − 43 = 0


6. 3x3 + 9x + 8 = 0		   10. x3 − 3x2 + 27x − 9 = 0


7. x3 + 3x2 + 27x − 31 = 0   11. 6x3 − 18x2 + 36x − 19 = 0 


8. 3x3 + 9x2 + 4x + 12 = 0   12. y3 − 6� EMBED Equation.DSMT4  ���y + 2 = 0
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