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III. The Vector Equation of a Line
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Besides the slope-intercept form, y = mx + b 
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and point-slope form,  y − y1 = m(x − x1)  
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and the general form,  Ax + By + C = 0
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we've got…


Consider 2 points, U and V in 2-space.  



ex/ 
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From the drawing at the right, we can see that any point P(x,y) or 
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on the line can be found by going out along 
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 to point V and then



following the difference vector, 
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, up or down the line.
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 is called a direction vector. Let 'r' represent any real number.


Our vector equation is:  
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In our example above, we have:  
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If r = 0, then we're at point V or 
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If r = 1, then we're at point U or 
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If r = ½ , then we're at the midpoint of segment 
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More equations of lines!


We also have the parametric equations for our example line:
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  which leads to the symmetric equation(s):  
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The parameter, r, can be 'eliminated' by taking the first equation and solving for 'r',
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.    Now, substitute this for 'r' in the second equation, 
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and we get:  2x + 3y − 18 = 0  or  
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The angle of inclination,
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, that a line makes with the x-axis 
is measured ccw from the positive x-axis. 
[image: image18.wmf]tan (slope)

m

q

=

.

From the general form of a line, Ax + By + C = 0, 

we obtain:  
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  (or slope). 

We also have a direction vector of (B, −A).

Since 
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Hence, we have a normal (perpendicular) vector to the line:  
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Later, we'll look at the equation of a plane. Did you wonder how we got the Cartesian equation: ax + by + cz = d? Guess what one normal vector to this plane is? Yup, you guessed it!  
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But first, that crazy formula for the distance from a point, P, to a line, Ax + By + C = 0.
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IV. Distance from a point to a line:  Given point P(x1, y1) and line 
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: Ax + By + C = 0
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  which means plug in (x1, y1) and divide by 
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We actually derived this formula with ordinary algebra and geometry but let's  
practice with vectors! 

Dot products are particularly useful when we want to find the component of a vector in a particular direction. Let 
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 be unit vectors. The scalar component of 
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 in the direction of 
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 is simply found by dotting 
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. Similarly for the 
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 direction.
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If 
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[image: image35.wmf]by it's magnitude (length) and voila!
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Now let T(x0, y0) be a point on the line and hence: Ax0+By0+C = 0, C = −Ax0 −By0
P(x1, y1) is off the line, so Ax1+By1+C is not zero.

Recall that (A, B) = 
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 is a normal vector and then 
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 which we'll soon need.
The difference vector, 
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(in bold), forms a right triangle with the normal vector, 
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Now the distance from P to the line is the dot product of 
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 = d
so just plug in (x1, y1) and divide by…
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V. Vector Equation of a Plane (vs the Cartesian equation: ax + by + cz = d)










Consider 3 noncollinear points:









U(u1, u2, u3)








V(v1, v2, v3)








W(w1, w2, w3)







Then the 2 difference vectors:
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 are coplanar.







The cross product of these 2 vectors







    must then be perpendicular to the plane.


Let 
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. Now look at the diagram below to see that for any 
point P(x,y,z) to be on the plane, the difference vector, 
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, must be perpendicular to

any normal vector. This means their dot product must equal zero. This gives us the

vector equation of a plane: 
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This looks simple enough, but suppose 
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  This last expression we can call 'd', then…

We have the Cartesian Equation of a Line:  ax + by + cz = d


where (a,b,c) is a normal vector to the plane. 


ex/ Given U(1,2,3), V(0,1,2) and W(−2,1,0)


(a) Find the vector equation of the plane and (b) find the Cartesian equation also.



(a) First obtain 
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[image: image60.wmf](

)

(

)

(

)

0,1,22,0,20

p

-×-=

r




(b) 
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The normal vector is used to 'orient' any plane in space. It's used to show the tilt of a 'spin plane' or the circular direction torque or angular momentum. 
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