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INFINITE SERIES

A. Introduction


We will need to understand how series are related to sequences. First consider 

an arithmetic sequence, say the positive even numbers.



ex/ sn = 2, 4, 6, 8, … , 2n, …


An infinite series is an indicated sum of the terms of a sequence.



ex/ S = 2 + 4 + 6 + … + 2n + … 


Each term of this 'infinite sum' is also called a term of the series, hence the 

 
general term or nth term for both sequence and its related series is:  an = 2n. 


Now we can never add all of the terms. We'll need to define what we mean by 


the "sum of a series". (The 'infinite' is usually implied from context.)


B. Summation Notation is useful here.



ex/ 
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This series is clearly not going to 'sum' to any real number. It's getting huge!

ex/ 
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The sum appears to be 2.

Here, the general term is getting smaller and smaller. [image: image3.wmf]lim0

n

n

a

®¥

=


ex/ 
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     This sum gets 'infinitely large'!

Although 
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 is a necessary condition for 'convergence', it isn't a 

sufficient condition! 


C. A Series and its associated Sequence of Partial Sums


Consider once again, S = [image: image6.wmf](
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We name this Geometric Series after the geometric sequence: sn = [image: image7.wmf]1
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Now consider the partial sums:




S1 = 1


= 1




S2 = 1 + 
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Sn = 
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These partial sums can be considered a sequence and it appears that the limit of these partial sums is 2. We're using 'capital S' vs lower case 's' to distinguish between 'Sums' and sequences. 


If this sequence of partial sums has a limit, L, then we say the series converges and define its sum as 'L'.  Here since 
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Def/ A series, 
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, is said to converge iff 
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 (a real number). Otherwise 

the series is said to diverge.


What will be important to determine the limit, L, will be a defining equation for the nth partial sum, Sn (not sn). In the geometric series used above, a very nice formula for the nth partial sum is:  Sn = 
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. By inspection, we can see the fractional term going to zero as n approaches infinity, so L = 2 and the series sum is 2. More about geometric series convergence later!

Thm/ If 
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converges, then 
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 (Recall the converse is not true.)

D. Some well-known series


(1) Geometric Series
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 is the initial term with common ratio, r)



ex/ 
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 Although not in the form shown above, a = 1/3 and r = 1/3.



Now consider the nth partial sum: 
 Sn = 
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Now comes a famous trick, multiply.
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Next, we'll subtract.
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Finally, we get the defining equation:
  Sn = 
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Since 
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We'll prove an important theorem as to when any geometric series converges. 
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Thm/ 
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 iff  
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Proof: 
Sn = 
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   (trick)      
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subtract:   (1 − r)Sn = 
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Now since 
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ex/ A ball is dropped from 20m above the ground and rebounds ¾ as high



as it fell from. The ball never stops bouncing yet the distance traveled by
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  we have d = 20 + 120 = 140m

(2) Harmonic Series   
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We saw this series as an example of where the general term went to zero, but the  
series did not converge. 
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 We can show


this last result and write: 
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 (Note: Not all divergent series approach infinity.)


We really don't (as yet!) have a definition for this 'equals infinity' business, but let's  


go ahead and group the terms to show that the partial sums will get larger than any 


proposed limit. Consider groups of 2n terms whose sums will all be larger than ½ .
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  Note: The partial sums will always be 

 
greater than any proposed large number if we continue far enough, 

since  
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More Series


(3) Alternating Series 



ex/ 
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   which converges


ex/  
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 = 1 + −1 + 1 + −1 + …  which diverges




Here, it would seem that we could group and keep getting 0, but 




consider the sequence of partial sums: Sn = 1, 0, 1, 0, 1, … which 




doesn't converge to either 0 or 1 (divergent).

(4) Factorial Series


ex/ 
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(5) p-series  
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 which converges where p > 1



ex/ 
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  convergent p-series



ex/ 
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  divergent p-series
E. An important series application to area

ex/ Find the area under the parabola, y = x2 from x = 0 to x = 1.
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As n approaches infinity, our approximations form a sequence of partial sums, Sn.


Sn = 
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Review the sum of the perfect squares: 
[image: image53.wmf]22222

1

(1)(21)

123...

6

n

i

nnn

in

=

++

=++++=

å


Sn = 
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20 + 2(15) + 2(11.25) + ...  Hmm, perhaps we should separate out that first '20' (term) to see the geometric series here: d = 20 + 30 + � EMBED Equation.DSMT4  ��� + …


d = 20 + � EMBED Equation.DSMT4  ��� and   since … 





y = x2





0        � EMBED Equation.DSMT4  ���   � EMBED Equation.DSMT4  ���...� EMBED Equation.DSMT4  ��� � EMBED Equation.DSMT4  ���





We'll approximate the area under the curve with rectangles each with a base of � EMBED Equation.DSMT4  ��� and a height which will be the squares of the x-values: 


� EMBED Equation.DSMT4  ��� and � EMBED Equation.DSMT4  ���… and � EMBED Equation.DSMT4  ���
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