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Transformations and Linear Systems
*Until now, our functions have mapped real numbers to real numbers. A vector function might map a vector to another vector with a different dimension.
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. This vector function maps 3-dimensional vectors to 2-dimensional vectors (as a projection of a 3-dimensional figure onto a plane (2 dimensions)).

Let's consider a mapping from 2-space to 2-space. It turns out that a matrix can represent a vector function! The matrix is called a transformation.


ex/ How do the following 2x2 matrices change (x,y)?
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Consider the unit square shown here and all its ordered pairs (or the vectors that locate all the points on the square). How does the vector function above transform this picture. (The domain set is often called the pre-image and the range set, the image.)

Sketch the image or range set.
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 a magnification for a > 1  and  a shrinking for  0 < a < 1

If g is defined by A = 
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 and f is defined by B = 
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Notice here that A = B−1 so the two transformations cancel out each others effects.

Other transformations:

(a) 
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(c)     
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reflection in the y-axis



reflection about the origin

(b) 
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(d) 
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reflection in the x-axis



reflection about the y = x line 
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ex/ Show by matrix multiplication the composite function that results when a reflection about the y-axis is followed by a reflection about the x-axis.
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 which is a reflection about the origin.
More work with transformations


ex/ Draw a graphs of the domain set, S, and the range set, T. 

S = {points on a triangle with vertices (−1,0),(1,0) and (0,2)}

T: image set of S under the transformation given by: 
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ex/ If R is the domain set of points on a triangle with vertices (2,0),(4,0) and (3,2), 



graph the range set, T, under the transformation: 
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ex/ Using the R set given above, graph its image set under the transformation given  

by  
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ex/ Give the vector function (in matrix form) which give the projection of 


{(x,y,z) | 3x + 4y + 6z + 12, x,y,z ≥ 0} into the xy-plane.


In order to map an ordered-triple, we could use a 3x3 matrix. The key here is to  

make sure that z = 0 when we're done with any (x, y, z) vector.
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  We also want to keep the x & y coordinates the same.


ex/ Find the 2x2 matrices which map the given set, S, onto set, T.



(a) S = {(x,y) | x2 + y2 = 1}   

T = {(x,y) | x2 + y2 = 16}



(b) S = {(x,y) | y = x3 , 0 ≤ x ≤ 2}  
T: y = −x3 , 0 ≤ x ≤ 2


(c) S = {(x,y) | y = 2x , 1 ≤ x ≤ 3}
T: y = −2x, −3 ≤ x ≤ −1



(d) S = {(x,y) | y = sin x , 
[image: image29.wmf]02

x

p

££

} T: y = sin 2x , 
[image: image30.wmf]0

x

p

££


Linear Transformations can be determined by finding out what happens to the unit vectors, 

 
[image: image31.wmf]ˆ

ˆˆ

,,

ijk

 and putting their images (
[image: image32.wmf](

)

(

)

ˆˆ

 and  

fifj

) as column vectors in the matrix. Easy!


ex/ Let f map 2-dimensional vectors to 2-dimensional vectors by a counterclockwise rotation. Assume a linear transformation and note (1,0) maps to (cos 30, sin 30) and 

(0,1) maps to (cos 120, sin 120) hence our matrix or function is:  
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ex/ In general, under a ccw rotation of 
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Solution of Linear Systems with Augmented Matrices

ex/ Solve: 
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or
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The object is to get a11 , a22 , a33 equal to '1' with zeroes elsewhere in the 'coefficient matrix' (3x3 part). We will finish with an 'augmented matrix' looking as shown below (assuming a unique solution exists).
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  which would imply x = a , y = b and z = c.

Step (1) Get a '1' for a11 by dividing the first row by 3.


Step (1)
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      Step (2)
Step (2) Get zeroes in the 1st column by multiplying the 1st row by −a21 and adding term-by-term to the 2nd row. Then multiply the 1st row by −a31 and adding term-by-term to the 3rd row. (In this case we happen to multiply the 1st row by −2 twice.)

Step (3) Get a '1' for a22 by dividing the second row by 
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Step (3)
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   Step (4)
Step (4) Get a zero for a32 by multiplying the 2nd row by −5/3 and adding to row 3.

Step (5) Get a zero for a12​ by multiplying the 2nd row by −2/3 and adding to row 1.


Step (5) 
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    Step (6)
Step (6) Get a '1' for a33 by dividing by −35/13 (or multiply by −13/35).

Step (7) Get a zero for a23 by multiplying the 3rd row by 5/13 and adding to row 2.


Step (7)
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     Step (8)
Step (8) Get a zero for a13​​ by multiplying the 3rd row by −12/13 and adding to row 1.

Presto! This is the augmented matrix method (Gaussian elimination). You've seen the solution of a matrix equation with A−1. You'll also use determinants and Cramer's Rule. 
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