




Determinants – Notes 




p. 1
Def/ The determinant of a 2x2 matrix, A = 
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 is:  ad − bc


Notation: det(A) = 
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 = 
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A short method for remembering this is to visualize or actually draw two criss-crossing lines. Line #1 down through 'a' and 'd' and line #2 up through 'b' and 'c' (saying "ad minus bc").
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3x3 matrices

 
A short method for finding a 3rd-order determinant is as follows. Write the first two columns again as the 4th and 5th columns as shown below. Then add 3 diagonal products going down (i) through '2' and '−3' and '−1' (ii) through '3' and '1' and '6' and (iii) through '1' and '2' and '−6'. (Shown below.) 
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   [6 + 18 + −12]   
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  [−18 + −12 + −6]
Then subtract 3 diagonal products going up (i) through '6' and '−3' and '1' (ii) through '−6' and '1' and '2' and (iii) through '−1' and '2' and '3'. (Show above.)


*Write the extra columns just once and plan to criss-cross the lines to get:


[6 + 18 + −12] − [−18 + −12 + −6]  or   [12] − [−36] = 48


**Once you get good at this, you won't have to bother writing the 4th and 5th columns. (You can just curve the lines back to pick up all three factors for each line!) The advantage will be that you won't have to rewrite the original determinant or array.


ex/ 
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ex/ 
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In general, however, to evaluate 3rd or higher order determinants, we need to "expand by a row or column of cofactors". Each element (aij entry) of a determinant has a cofactor which consists of (i) a lower order determinant(or minor), |M| and (ii) a plus or minus sign which depends upon the ith row and jth column of the element.
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p. 2

Expansion by row or column – Multiply each element of a row or column by its cofactor and add the results to get the determinant.
Def/ The cofactor of aij is: (−1)i+j |M|

Def/ The minor or |M| of aij is the lower order determinant found from the original matrix with the ith row and jth column eliminated.


ex/ Consider the minor for a12. Cross out the 1st row and the 2nd column of the  
original matrix.
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     to get the minor, |M| = 
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 of a12 
*The plus or minus sign alternates as we go down a column or across a row. Just make sure you start with the correct sign!


ex/ Let expand the 3x3 matrix given above 'by the 2nd row'. Notice if we start with a21 , i + j = 2 + 1 = 3 (odd), hence (−1)i+j = −1 (our initial 'sign' is negative).
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+ −3
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= −2(3) −3(−8) − 1(−30)


In practice, we'll usually combine the sign of the cofactor with the entry and our work will look more like:
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 = −2(3) −3(−8) −1(−30) = −6 + 24 + 30 = 48
*The a11 entry will have a positive sign and you can move around (left-right or up-down) the matrix all you want and the cofactor signs will alternate between + and −.

**Choose a row or column with a lot of zeroes! (or at least 'nice' numbers for entries.)


ex/ Here's a 4x4. Pick a row or column. |A| = 
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 (I picked row 4.)

Starting with a '+' for a11 and alternating signs, we get a 'negative' for a41= 2, so…

|A| = −2
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 + 0 − 0 + 3
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 = −2(6 + 3 + 12) + 3(6 − 4 + 3) = −27
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p. 3

Properties of Determinants (true for columns also)
(1) If A has a row of zeroes, then |A| = 0.

(2) If A has 2 identical rows, then |A| = 0.

(3) If B is obtained from A by interchanging two rows, then |B| = −|A|.

(4) If B is obtained from A by multiplying a row by a scalar, k, then |B| = k|A|.

(5) If B is obtained by the interchange of 1st row with 1st column and/or the 2nd row with 2nd column, etc., then |B| = |A|.
(6) If B is obtained from A by adding a multiple of a row to another, then the determinant remains the same, |B| = |A|.
ex/ Let's find the determinant of A by making its 2nd row look like '1 0 0 0'.

|A| = 
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 Step (1) add twice row 1 to row 2 
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Now, we'll go for zeroes in the 2nd row (other than a21 = 1) by adding columns!

Step (2a) add 2 times column 1 to column 2

Step (2b) add 2 times column 1 to column 3

Step (2c) add −3 times column 1 to column 4 

Now expand by the 2nd row. 

|A| = −1
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 = −1[27 + 27] = −54

Cramer's Rule for solving a system of n linear equations in n unknowns.

ex/ For:  
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    Denote the 'delta determinant' by: 
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This is the determinant of the matrix of coefficients. By replacing any column by the column of constants we obtain:
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ex/ Solve by Cramer's Rule: 
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x = 
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  and   y = 
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