Sections 13.4–13.8   Even Answers Mostly
Section 13.4  Class Exercises

1. n = 17   2. n = 9   3. n = 2   4. 
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6. 6 is a factor of 
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8. For n =1, 
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. Now assume the statement is true for n = k (induction hypothesis): 
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. We need to show that the statement is true for n = k+1 or 
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So we assume that 1 + 2 + … + k = 
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. Now add ‘k+1’ to both sides to obtain:

1 + 2 + … + k + k + 1 =
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 so that if the statement is true for n = k, then it is true for n = k +1, therefore by the math induction principle: the statement is true for all 
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Section 13.4  Practice Exercises

2. n = 5   4. 
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   6. 
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8. 13 + 23 + 33 + … + n3 = 
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12. True for n = 1 since 13 = (1(1+1)(2(1)+1))/6 = 1. Now assume true for n = k, that is:

12 + 22 + 32 + … + k2 =
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. Now add (k+1)2 to both sides to get:  12 + … + k2 + (k+1)2 = 
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14. True for n = 1? 22 = 2(2)(3)/3 = 4 check. Assume true for n = k. Then add (2(k+1))2 to both sides and show the formula works for n = k + 1. See #12 above

16. True for n = 1, as 5 = (25-5)/4 = 5. Now assume true for n = k and try to show true for n = k+1

18. (ab)1 = a1b1 check, true for n = 1. Assume (ab)k = akbk and then multiply both sides by ab to get:

(ab)k+1 = akabkb = ak+1bk+1 (distributive prop. of exponentiation over multiplication) true for all n = 1,2,…
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19. horizontal asymptote: y = 1, vertical asymptote: x = 1, intercept (0,0) 
20. Inductive ‘reasoning’ is not a deductive proof. If the sun comes up today, and the next day, and the next, and the next, then we conclude that the sun will come up the next day also. This is a way at looking at repetitive data and making a conclusion based on the data, knowing that even if the data is correct, the conclusion may not ‘work’.

21. True for n = 1 since 1(2) = (1(2)(3))/3.  Assume true for n = k (induction hypothesis): 
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, then add 
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 to both sides and show the new right side equals: 
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 and hence the formula works for n = k + 1. Hence the formula is true
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22. True for n = 1. Assume true for n = k: 
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. Now add 
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 to both sides to get: 
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. Put the right side under a common denominator to obtain: 
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 and the statement is true for n = k+1.

Section 13.4 (continued)
23. 
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 hence the statement is true for n = 1. Assume (induction hypothesis) true for n = k: 
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and add 
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 to both sides. Then the right side is: 
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. Hence, the statement is true
[image: image31.wmf]1

n

"³

.  

24. Can’t we just prove this since if a > 1, the exponential function is increasing and hence an+1 > an ??? 
25. Actually this can be useful when studying the convergence of infinite series in AP Calculus BC…

Notice that 33 > 3! and 34 > 4! until n = 7, then 3n < n!

26. True for n = 1, since 1 < 21. Assume Pk: k < 2k and then add 1 to both sides to get: k + 1 < 2k + 1. Now notice that 2k + 1 < 2k + 2 = 2k+1, hence Pk+1 is true. 

27. 41 – 1 = 3 (a multiple of 3), so Pn is true for n = 1. Assume Pk: 4k – 1 is a multiple of 3 ( = 3i where i is an integer). Move the ‘-1’ over and multiply both sides by ‘4’ to get: 4k+1 = 4(3i + 1) = 12i + 4. Subtract ‘1’ back to the left side to get: 4k+1 – 1 = 12i + 3 = 3(4i + 1) which is a multiple of 3, so Pk+1 is true.

28. Divisible by 2 means 2 is a factor of the expression which is closed under integers. So see #27 above.

29. Show (i) P1 is true and  (ii) Pk 
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 Pk+1     
30. Hmm… This looks easy since e > 2.

31. 
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32. See #29 and notice that while part (ii) was true, part (i) is never true for any n. We need both parts!

33. [image: image34.jpg]


 34. a million examples is not a ‘proof’.  35. [image: image35.jpg]


 note the 45o rotation
36. P1 is true since x – 1 = x1 – 1. Now assume Pk is true, that is, x – 1 is a factor of xk – 1. Now we get tricky… x – 1 is also a factor of (xk – 1) + xk(x – 1) since it is a factor of both terms. This expression equals: xk – 1 + xk+1 – xk = xk+1 – 1 and hence, Pk+1 is true. 
37. (am)1 = am hence P1 is true. Assume Pk is true: (am)k = amk and multiply both sides by am to get: 

(am)kam = amk + m  which is equivalent to: (am)k+1 = am(k+1) and therefore it follows that Pk+1 is true.

38, 39, 40. all seem like more of the same stuff! I’m moving on!

41. With my calculator it looked like the sequence was going to 5. Using fractional exponents I got the following formula: 
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, but back to proving this formula is correct!

It’s true for n = 1, since s1 = 
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 and we’re given the recursion equation: 
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42. True for n = 2, there is 1 intersection point for 2 non-parallel lines. Assume true for n = k, etc.

43. True for n = 3, diagonals in a triangle = 0 (P3 is true). Assume true for n = k, show true for n = k + 1.
44. F​1 = 1 = F3 – 1 so P1 is true. Assume F1 + F2 + … + Fk = Fk+2 – 1 (Pk ), then add Fk+1 to both sides to get: F1 + … + Fk+1 = Fk+2 + Fk+1 – 1 = Fk+3 – 1, q.e.d. 
45. The two sets have the same # of people are not the same set.
Test Yourself  13.4
2. 
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   4. an = (n – 1)3   6. 5,3,-2,-5   8. a1 = 0.1, an+1 = -.1an   10. neither   

12. an = -7n + 22, -83   14. 78,82,86   16. -9   18. 
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   19. -180   20. 130.8  

21. 13 = 12(1+1)2/4  P1 is true. Assume true for Pk and show 13 + … + k3 + (k+1)3 = 
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Section 13.5  Class Exercises

1. 5040   2. 362,880   3. 11,880   4. 56   5. 77,520   6. 4950   7. True   8. False, try n = 2   

9. False, 0! = 1 by definition   10. True   11. True   12. False, Try n = 2 and r = 1

13.  1  8  28  56  70  56  28  8  1 and 1  9  36  84  126  126  84  36  9  1

14. x9 + 9x8y + 36x7y2 + 84x6y3 + 126x5y4 + 126x4y5 + 84x3y6 + 36x2y7 + 9xy8 + y9 

15. 
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   16. 1024x5 – 640x4y3 + 160x3y6 – 20x2y9 + 
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17. 20,349   18. 64,064

Section 13.5  Practice Exercises

2. 8,814,960   4. 35   6. 67,525   8. x6 – 30x5y + 375x4y2 – 2500x3y3 +9375x2y4 – 18,750xy5 + 15,625y6
10. z12 + 16z7 + 96z2 + 256z-3 + 256z-8   12. 
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 one of those easy proofs that doesn’t feel like you’re proving anything!  14. 
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16. 55, 2   18. 56, 5   20. 792a5b7   22. 150a2b2   24. 924x18   26. 70x12  28. 
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30. Even-numbered terms get a negative sign and odd-numbered terms get a postive sign.

32. -278 – 29i   34. .912673   36. The coefficients have symmetry as well as the exponents. 

37. Treat x + y as a single term and then evaluate each term (x + y)k in the expansion.

38. 5670x4   40. 16x15  41. nxn-1   42. sum = 2n   43. 2n = (1 + 1)n = 
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44. Fibonacci pattern   45. 0 = (1 + (-1))n =
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   46. 3n = (2 + 1)n
Challenge 13.5   1. 52/9   2. 18
Section 13.6  Class Exercises

1. 0   2. 0   3. 
[image: image52.wmf]2

   4. converges to 0   5. diverges   6. diverges   7. converges to 2   8. diverges   

9. converges to 0   10. diverges   11. converges to 0   12. diverges   

13. The limit must be 0. The positive terms couldn’t approach a negative limit and likewise for negatives. 

14. divergent, they increase without bound   15. ½, 1/3, 1/5, 1/7, 1/11, 1/13, 1/17, 1/19, 1/23, 1/29 which appears to converge to zero.  

Section 13.6  Practice Exercises

2. 
[image: image53.wmf]1,2,3,2,5,6

 divergent   4. diverges   6. diverges   8. converges to 2/3   10. diverges   

12. converges to 0   14. converges to 0   16. Divergent because the odd terms close in on -1 and the even terms close in on 0.   18. divergent as it increases without bound   20. convergent to that constant term

22. diverges  24. converges to 0   26. diverges   28. |r| < 1 iff the geometric series converges   30. diverges  

32. converges   34. if d = 0, then it’s a constant sequence   36. convergent with the terms going to zero

37. A stack of 1 million dollar bills is 10m high but a stack of 1 billion dollar bills is 10km high.

38. convergent to zero   39. “The limit of a sum is the sum of the limits.” *with qualifications

40 & 41. “The limit of a product(quotient) is the product(quotient) of their limits.” *qualifications

42. Examples don’t prove the theorems   43. If the denominator degree > numerator degree then the limit is the horizontal asymptote: y = 0. If the (highest) degrees are equal, then the limit is y = ck/bt .

44. N > 10   45. N > 20,000   46. The calculator selects real numbers as if the function were continuous.

Review 13.6   zero
Section 13.7  Class Exercises
1. 2,6,12,20,30   2. 
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121

416642561024

,,,,

   3. 6, 9.6, 11.76, 13.056, 13.8336    4. 6, 66, 666, 6666, 66 666
5. 1/3   6. diverges   7. .1765   8. 24   9. -1/5   10. diverges  11. 23/99   12. 202/99   13. 129/10   14. -331/9 

Section 13.8  Practice Exercises

2. .6, .96, 1.176, 1.3056, 1.38336   4. 4.5, 8.55, 12.195, 15.4755, 18.42795   6. 22.5   

8. 16/3   12. diverges   14. The sequence of partial sums must diverge.  16. 5/11   18. 6691/9900 

20. If r = 1, then the denominator is zero. If |r| > 1, then |arn| increases without bound and there is no limit.

22. sn = 
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,…  vs Sn = 
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  Let’s work with the sequence of partial sums: Sn = 
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24. 1   25. 
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 hence P1 is true. Assume Pk is true: 
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. We want to show Pk+1 is true, ie, 
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, so the plan will be to add 
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 to both sides of our induction hypothesis and try to show the right sides are equal: 
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 QED (quod erat demonstrandum)
26. 1/6   27. Show true for n = 1,
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Add 
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 to both sides and show the right side equals 
[image: image70.wmf]1

23

k

k

+

+

 so that Pk+1 is true.

28. ½    30. 105.4545 m   32. 3689.28 m, no, series sum is 5000 m   33. ex 1/ Cut a given length of string in half and then in half again, etc. ex 2/ Paint 1/3 of a wall, then 1/3 of the remaining wall, etc
34. We need: 
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36. 
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. No, we can’t start out with a positive 1st term since the added terms get smaller and keep changing signs, we’ll never get the sum to be negative.

38. An infinite arithmetic series diverges (except in the special case where d = 0). A finite arithmetic series must always have a sum.
40. 
[image: image75.wmf](

)

log1log2log2log3...loglog10log(1)

n

Snnn

=-+-++-+=-+

 and 
[image: image76.wmf]lim

n

n

S

®¥

=-¥

 so the infinite series decreases without bound.  

42. 2   44. The time it takes to cover the last segments of distance approaches a limit (as does the sum of these infinite segments). 

45. 
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 Hmm… now a ‘true’ geometric series can never go to zero since the first term is 
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, then we could generate an infinite series whose sum is zero. Let a = 1 and r = ½ , then the infinite sum would be 2 and we’ll just add a term of -2 to the front… 
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Challenge 13.7  9840
 Section 13.8  Class Exercises
1. 4 < x < 6   2. 4 < x < 5   3. -4 < x < 4   4. -10 < x < 10   5. 
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7. 1.10517   8. .198669   9. .453596   10. 1.64844   11. 
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Section 13.8  Practice Exercises

2. 1 < x < 3/2   4. -1/8 < x < 1/8   6. 
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   14. 2.71667   16. .877582   18. -.247404   20. |f(x)| < 1   22. x = 1, 
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   28. -.333-.933i   30. 1.0050   32. 
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34. The error is least near x = 0. To get more accuracy use more terms from the power series.
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 38. Use 
[image: image94.wmf]246

2!4!6!

()1

xxx

Px

=-+-


40. -.6911458333 vs calculator value of -.6931472 

42. 
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43. 
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44. e    46. 
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Test Yourself  13.8

2. x7 – 14x3 + 84x-1 – 280x-5 + 560x-9 – 672x13 + 448x17 – 128x21   4. -393,750a4c10
6. diverges   8. converges to 0   10. 9   12. -5/4   14. -16/3   16. -10/3 < x < 10/3

Summary and Review  Chapter 13

2. a1 = -15, an = an-1 + 7   4. arithmetic, .05   6. an = (-3)n, 531,441  

8. -12, -72, -432 or 12, -72, 432   10. 
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   12. 354   

13.  (2n)2 = 4 = 2(2)(3)/3 when n = 1 so P1 is true. Assume 22 + 42 + ... + (2k)2 
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 and try to show 22 + 42 + ... + (2k)2 + (2k+2)2 
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 by adding (2k+2)2 to both sides of the induction hypothesis and showing the right sides are the same.

14. m20 + 15m13 + 90m6 + 270m-1 + 405m-8 + 243m-15   

16. diverges   18. diverges   20. converges to 1   22. 2 < x < 4
Chapter 13 Test

1. -3, 6, -9, 12, -15   2. an = 6n – 11   3. -1, -4, -7, -10   4. 
[image: image103.wmf]33
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  5. an = 5n – 28, 37

6. geometric, -1/3   7. neither   8. arithmetic, 5   9. 32, 37, 42   10. 
[image: image104.wmf]317
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  11. 
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12. 61.6   13. 12 = (1/3)(2-1)(2+1) = 1 so P1 is true. Assume Pk is true and show Pk+1 follows.

14. 64x6 – 576x5y-2 + 2160x4y-4 – 4320x3y-6 + 4860x2y-8 – 2916xy-10 + 729y-12
15. 20,500,480m9n6   16. converges to 2   17. converges to 0   18. converges to ¼  

19. 240 ft   20. -5/2 < x < 5/2   21. 
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Challenge  

converges

Cumulative Review

1. B   2. E   3. E   4. C   5. D   6. B   7. A   8. C   9. E   10. B   11. C   12. B

19.�
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