Rotational Kinematics Quiz 7.0H

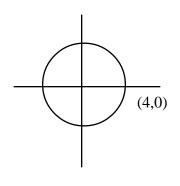
1. A record player starts from rest and gets up to a "speed" of 45 rpm. This happens in 3 seconds with constant angular acceleration.

- (a) Find the average angular acceleration.
- (b) Find the number of revolutions made by the turntable in these 3 seconds.
- (c) Find the average angular velocity over this 3 second interval.

2. A point on the edge of a circle of radius 3m completes 4 cycles in 6 seconds while turning with uniform circular motion.

- (a) What is the period of revolution?
- (b) What is the tangential acceleration (a_t) ?
- (c) What is the angular velocity (ω) ?
- (d) What is the magnitude of the centripetal acceleration (a_c) of the point?

3. A rolling wheel of radius 7m is turning at 5^{Rad_s} when it slows to a stop with constant angular acceleration of magnitude 4^{Rad_s} . Assume no slipping.


- (a) What is the angular distance that the wheel turns thru?
- (b) What is the stopping distance of the wheel as measured along the road?
- (c) What is the number of revolutions that the wheel turns thru?
- (d) What is the stopping time?

4. The position of point P is given parametrically by :

Let
$$\omega = \frac{\pi}{6} \frac{\text{Rad}_s}{\text{Rad}_s}$$

 $\begin{cases} x = 4 \cos \omega t \\ y = 4 \sin \omega t \end{cases}$

- (a) What is the constant (linear) speed of P?
- (b) What is the position $(\vec{r} = (x, y))$ of P at the instant t = 1 sec?
- (c) What is the velocity $(\vec{v} = (v_x, v_y))$ of P at the instant t = 1 sec?
- (d) Show the dot product $\vec{r} \cdot \vec{v} = 0$ at the instant t = 1 sec.
- (e) What is the acceleration $(\vec{a} = (a_x, a_y))$ of P at the instant t = 1 sec?
- (f) Find the magnitude of the acceleration?

$$\vec{r} = 4(\cos\omega t, \sin\omega t)$$
$$\vec{v} = 4\omega(-\sin\omega t, \cos\omega t)$$
$$\vec{a} = 4\omega^2(-\cos\omega t, -\sin\omega t)$$

